Prospective Terahertz Applications of Carbon Nanotubes

  • M. E. Portnoi
  • O. V. Kibis
  • M. Rosenau Da Costa
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We formulate and justify several proposals utilizing the unique electronic properties of different types of carbon nanotubes for a broad range of applications to THz optoelectronics, including THz generation by hot electrons in quasi-metallic nanotubes, frequency multiplication in chiral-nanotube-based erlattices controlled by a transverse electric field, and THz radiation detection and emission by armchair nanotubes in a strong magnetic field.


Carbon nanotubes terahertz radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ferguson and X.C. Zhang, “Materials for terahertz science and technology”, Nat. Mater. 1, 26-33, 2002.CrossRefPubMedADSGoogle Scholar
  2. 2.
    D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1-66, 2004.CrossRefADSGoogle Scholar
  3. 3.
    S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56-58, 1991.CrossRefADSGoogle Scholar
  4. 4.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.CrossRefGoogle Scholar
  5. 5.
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, edited by M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Springer, Berlin, 2001.Google Scholar
  6. 6.
    S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Berlin, 2004.Google Scholar
  7. 7.
    H.M. Manohara, M.J. Bronikowski, M. Hoenk, B.D. Hunt, and P.H. Siegel, “High-current-density field emitters based on arrays of carbon nanotube bundles”, J. Vac. Sci. Technol. B 23, 157-161, 2005.CrossRefGoogle Scholar
  8. 8.
    A. Di Carlo, A. Pecchia, E. Petrolati, and C. Paoloni, “Modeling of carbon nanotube-based devices: from nanoFETs to THz emitters”, Proc. SPIE 6328, p. 632808, 2006.Google Scholar
  9. 9.
    A.S. Maksimenko and G. Ya. Slepyan, “Negative differential conductivity in carbon canotubes”, Phys. Rev. Lett. 84, 362-365, 2000.CrossRefPubMedADSGoogle Scholar
  10. 10.
    G. Pennington and N. Goldsman, “Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes”, Phys. Rev. B 68, p. 045426, 2003.CrossRefADSGoogle Scholar
  11. 11.
    D. Dragoman and M. Dragoman, “Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes”, Physica E 24, 282-289, 2004.CrossRefADSGoogle Scholar
  12. 12.
    A.A. Odintsov, “Schottky barriers in carbon nanotube heterojunctions”, Phys. Rev. Lett. 85, 150-153, 2000.CrossRefPubMedADSGoogle Scholar
  13. 13.
    F. Léonard and J. Tersoff, “Negative differential resistance in nanotube devices”, Phys. Rev. Lett. 85, 4767-4770, 2000.CrossRefPubMedADSGoogle Scholar
  14. 14.
    M.H. Yang, K.B.K. Teo, W.I. Milne, and D.G. Hasko, “Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts”, Appl. Phys. Lett. 87, p. 253116, 2005.CrossRefADSGoogle Scholar
  15. 15.
    C. Lu, L. An, Q. Fu, J. Liu, H. Zhang, and J. Murduck, “Schottky diodes from asymmetric metal-nanotube contacts”, Appl. Phys. Lett. 88, p. 33501, 2006.CrossRefGoogle Scholar
  16. 16.
    O.V. Kibis, D.G.W. Parfitt, and M.E. Portnoi, “Superlattice properties of carbon nanotubes in a transverse electric field”, Phys. Rev. B 71, 035411, 2005.CrossRefADSGoogle Scholar
  17. 17.
    G. Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Herrmann, E.E.B. Campbell, and I.V. Hertel, “Highly efficient high-order harmonic generation by metallic carbon nanotubes”, Phys. Rev. A 60, 777-780, 1999.CrossRefADSGoogle Scholar
  18. 18.
    G. Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, A.V. Gusakov, and J. Herrmann, Phys. Rev. A 63, 053808, 2001.CrossRefADSGoogle Scholar
  19. 19.
    D. Dragoman and M. Dragoman, “Terahertz continuous wave amplification in semi-conductor carbon nanotubes”, Physica E 25, pp. 492-496, 2005.CrossRefADSGoogle Scholar
  20. 20.
    M. Dragoman, A. Cismaru, H. Hartnagel, and R. Plana, “Reversible metal-semiconductor transitions for microwave switching applications”, Appl. Phys. Lett. 88, 073503, 2006.CrossRefADSGoogle Scholar
  21. 21.
    G. Ya. Slepyan, M.V. Shuba, S.A. Maksimenko, and A. Lakhtakia, “Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas”, Phys. Rev. B 73, 195416, 2006.CrossRefADSGoogle Scholar
  22. 22.
    O.V. Kibis, M. Rosenau da Costa, and M.E. Portnoi, Nano Lett. 7, 3414, 2007.CrossRefPubMedADSGoogle Scholar
  23. 23.
    T. Ando, T. Nakanishi, and R. Saito, “Impurity scattering in carbon nanotubes — absence of back scattering”, J. Phys. Soc. Jpn. 67, 1704-1713, 1997.CrossRefADSGoogle Scholar
  24. 24.
    Z. Yao, C.L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes”, Phys. Rev. Lett. 84, 2941-2944, 2000.CrossRefPubMedADSGoogle Scholar
  25. 25.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-field quasiballistic transport in short carbon nanotubes”, Phys. Rev. Lett. 92, 106804, 2004.CrossRefPubMedADSGoogle Scholar
  26. 26.
    J.-Y. Park, S. Resenblatt, Yu. Yaish, V. Sazonova, H. Üstünel, S. Braig, T.A. Arias, P.W. Brouwer, and P.L. McEuen, “Electron-phonon scattering in metallic single-walled carbon nanotubes”, Nano Lett. 4, 517-520, 2004.CrossRefADSGoogle Scholar
  27. 27.
    M. Freitag, V. Pereibenos, J. Chen, A. Stein, J.c. Tsang, J.A. Misewich, R. Martel, and Ph. Avouris, “Hot carrier electroluminescence from a single carbon nanotube”, Nano Lett. 4, 1063-1066, 2004.CrossRefADSGoogle Scholar
  28. 28.
    V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes”, Phys. Rev. Lett. 94, 086802, 2005.CrossRefPubMedADSGoogle Scholar
  29. 29.
    C.L. Kane and E.J. Mele, “Size, shape, and low energy electronic structure of carbon nanotubes”, Phys. Rev. Lett. 78, 1932-1935, 1997.CrossRefADSGoogle Scholar
  30. 30.
    M. Ouyang, J.-L. Huang, C.L. Cheung, and C.M. Lieber, “Energy gaps in “metallic” single-walled carbon nanotubes”, Science 292, 702-705, 2001.CrossRefPubMedADSGoogle Scholar
  31. 31.
    Y. Li, U. Ravaioli, and S.V. Rotkin, “Metal-semiconductor transition and Fermi velocity renormalization in metallic carbon nanotubes”, Phys. Rev. B 73, 035415, 2006.CrossRefADSGoogle Scholar
  32. 32.
    D. Gunlycke, C.J. Lambert, S.W.D. Bailey, D.G. Pettifor, G.A.D. Briggs, and J.H. Jefferson, “Bandgap modulation of narrow-gap carbon nanotubes in a transverse electric field”, Europhys. Lett. 73, 759-764, 2006.CrossRefADSGoogle Scholar
  33. 33.
    I. Milošević, T. Vuković, S. Dmitrović, and M. Damnjanović, “Polarized optical absorption in carbon nanotubes: a symmetry-based approach”, Phys. Rev. B 67, 165418, 2003.Google Scholar
  34. 34.
    J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, and M.S. Dresselhaus, “Optical absorption matrix elements in single-wall carbon nanotubes”, Carbon 42, 3169-3176, 2004.CrossRefGoogle Scholar
  35. 34.
    C. Zener, “A theory of the electrical breakdown of solid dielectrics”, Proc. Royal. Soc. (London) 145, 523, 1934.MATHCrossRefADSGoogle Scholar
  36. 36.
    For the energy spectrum near the band edge given by \( \varepsilon \, = \, \pm \,[\varepsilon _g ^2 /4 + \,\hbar ^2 \nu_F^2 \,(k\, - \,k_0 )^2 ]^{1/2}\) , it can gF k0 be shown that α = π/4.Google Scholar
  37. 37.
    A. Svizhenko and M.P. Anantram, Phys. Rev. B 72, 085430, 2005.CrossRefADSGoogle Scholar
  38. 38.
    A. Grüneis, R. Saito, G.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Joria, A.G. Souza Filho, G. Dresselhaus, and M.S. Dresselhaus, “Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes”, Phys. Rev. B 67, 165402, 2003.CrossRefADSGoogle Scholar
  39. 39.
    V.N. Popov and L. Henrard, “Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models”, Phys. Rev. B 70, 115407, 2004.CrossRefADSGoogle Scholar
  40. 40.
    R. Saito, A. Grüneis, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, M.A. Pimenta, and A.G. Souza Filho, “Optical absorption of graphite and single-wall carbon nanotubes”, Appl. Phys. A 78, 1099-1105, 2004.CrossRefADSGoogle Scholar
  41. 41.
    S.V. Goupalov, “Optical transitions in carbon nanotubes”, Phys. Rev. B 72, 195403, 2005.CrossRefADSGoogle Scholar
  42. 42.
    Y. Oyama, R. Saito, K. Sato, J. Jiang, G.G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, and M.S. Dresselhaus, “Photoluminescence intensity of single-wall carbon nanotubes”, Carbon 44, 873-879, 2006.CrossRefGoogle Scholar
  43. 43.
    M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M.H. Huang, M. Huang, J. Hone, S. O’Brien, J.A. Misewich, T.F. Heinz, L. Wu, Y. Zhu, and L.E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure”, Science 312, 554-556, 2006.CrossRefPubMedADSGoogle Scholar
  44. 44.
    V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Quantum Electrodynamics, Butterworth-Heinemann, Oxford, 1997.Google Scholar
  45. 45.
    O.V. Kibis and M.E. Portnoi, “Carbon nanotubes: a new type of emitter in the terahertz range”, Technical Phys. Lett. 31, 671-672, 2005.CrossRefADSGoogle Scholar
  46. 46.
    M. Rosenau da Costa, O.V. Kibis, and M.E. Portnoi, to be published.Google Scholar
  47. 47.
    K.N. Alekseev, M.V. Gorkunov, N.V. Demarina, T. Hyart, N.V. Alexeeva, and A.V. Shorokhov, “Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices”, Europhys. Lett. 73, 934-940, 2006.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • M. E. Portnoi
    • 1
  • O. V. Kibis
    • 2
  • M. Rosenau Da Costa
    • 3
  1. 1.School of PhysicsUniversity of ExeterUK
  2. 2.Department of Applied and Theoretical PhysicsNovosibirsk State Technical UniversityRussia
  3. 3.International Center for Condensed Matter PhysicsUniversity of BrasiliaBrazil

Personalised recommendations