180° Ferroelectric Domains in Thin Films and Superlattices

  • AnaÏs Sene
  • Igor A. Luk'Yanchuk
  • Laurent Lahoche
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

In the micro- and nanoscale ferroelectric samples, formation of periodic polarization domains is the efficient mechanism of reducing depolarization field that is produced by the surface bound charges. This makes the physics of these devices different from the bulk samples. We present the results of modeling of ferroelectric domains and domain textures in ferroelectric thin films and periodic paraelectric/ ferroelectric superlattices, basing on the self-consistent solution of the coupled electrostatic and Ginzburg-Landau equations. We go beyond the traditionally used lowtemperature Kittel approximation (in which the polarization is assumed to be temperature independent and constant across domains) and explore the temperature evolution of the domain-induced properties. We study in detail the evolution of polarization profile P(x, z) in the periodic domains structure as function of the temperature and of the film width and propose the simple interpolation formula that can recover all the regimes of the domain structure, from high temperatures and thin films to low temperatures and thick films.

Keywords

Ferroelectric domains modeling thin films superlattices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dawber, K. M. Rabe and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005)CrossRefADSGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Elsevier, New York, 1985)Google Scholar
  3. 3.
    A. M. Bratkovsky and A. P. Levanuk, Phys. Rev. Lett. 84, 3177 (2000)CrossRefPubMedADSGoogle Scholar
  4. 4.
    E. V. Chensky and V. V. Tarasenko, Sov. Phys. JETP 56, 618 (1982) [Zh. Eksp. Teor. Fiz. 83, 1089 (1982)]Google Scholar
  5. 5.
    V. A. Stephanovich, I. A. Luk’yanchuk and M. G. Karkut, Phys. Rev. Lett. 94, 047601 (2005)CrossRefPubMedADSGoogle Scholar
  6. 6.
    C. Kittel, Phys. Rev. 70, 965 (1946)CrossRefADSGoogle Scholar
  7. 7.
    Y. G. Wang, W. L. Zhong and P. L. Zhang, Phys. Rev. 51, 5311 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M. Abramowitz and I. A. Stegun (eds.) Handbook of Mathematical Functions (10th ed., NBS, 1972)Google Scholar
  9. 9.
    G. Catalan, J. F. Scott, A. Schilling and J. M. Gregg, J. Phys.: Cond. Matter 19, 022201 (2007)CrossRefADSGoogle Scholar
  10. 10.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998)MATHGoogle Scholar
  11. 11.
    A. M. Bratkovsky and A. P. Levanyuk, Appl. Phys. Lett. 186, 171 (2006)Google Scholar
  12. 12.
    M. Tyunina and J. Levoska, Phys. Rev. B63, 224102 (2001)ADSGoogle Scholar
  13. 13.
    A. Lookman, R. M. Bowman, J. M. Gregg et al., J. Appl. Phys. 96, 555 (2004)CrossRefADSGoogle Scholar
  14. 14.
    P. Mokry, A. K. Tagantsev and N. Setter, Phys. Rev. B70, 172107 (2004)ADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • AnaÏs Sene
    • 1
  • Igor A. Luk'Yanchuk
    • 1
  • Laurent Lahoche
    • 2
  1. 1.University of Picardie Jules VerneLaboratory of Condensed Matter PhysicsAmiensFrance
  2. 2.Roberval LaboratoryUniversity of Technology of CompiegneFrance

Personalised recommendations