Skip to main content

Ionic Transport Behavior in Na2SO4-Li2O-MoO3-P2O5 Glassy System

  • Conference paper
Smart Materials for Energy, Communications and Security

Abstract

The need for electrolytes suitable for energy storage has spurred investigations into a number of lithium, silver and sodium ion conducting inorganic glass systems. It is apparent that two strategies have been used in the design of ion conducting electrolytes. The first is to use a combination of two anionic species which has been known to give increased ionic conductivity and is attributed to the so-called mixedanion effect. The second strategy is to dissolve ionic cation salt in a conventional polymeric silicate, borate or phosphate glass containing a same cation. The increased conductivity is attributed to a volume increasing effect of the dissolved ionic salt. Several studies have been reported on lithium phosphate glasses to which lithium halides and lithium sulphate have been added. However, there has been no experimental results for the introduction of sodium sulphate into the lithium phosphate network. How specifically this feature – mixed alkali in the presence of sulphate ion — influences ion transport in the glasses is unclear. It is therefore necessary to investigate the ion transport behaviour of Na2SO4 containing lithium phosphate glasses in order to understand better the role of Na2SO4 in the ionic cation transport in these glasses. In this paper we report both dc and ac conductivity measurements performed on the 0.5[xNa2SO4-(1-x)Li2O]-0.5[0.4 (MoO3)2-0.6P2O5] glasses with x varying between 0 and 1. The complex impedance data is analyzed in conductivity and electric modulus formalism in order to throw light on transport mechanism. The glass composition relative to (x = 0.5) has exhibited a decreasing in the conductivity of about two orders of magnitude compared to the simple end glasses (x = 0, 1). This behaviour is associated with the mixed alkali effect (MAE). It could be attributed to the fact that the two types of alkali ions are randomly mixed and have distinct conduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Antić-Fidančev, B. Viana, P. Aschehoug, L. Bih, A. Nadiri, M. Taibi, J. Aride, Mater. Sci. Forum 518 (2006) 447.

    Article  Google Scholar 

  2. R.K. Brow Jr., J. Non-Cryst. Solids 263-264 (2000) 1.

    Google Scholar 

  3. S.W. Martin Jr., Am. Ceram. Soc. 74 (1991) 1767.

    Article  CAS  Google Scholar 

  4. C.A. Angell, Sol. St. Ionics 9-10 (1983) 3.

    Article  CAS  Google Scholar 

  5. H.L. Tuller Jr., J. Non-Cryst. Solids 73 (1985) 331.

    Article  CAS  ADS  Google Scholar 

  6. C.C. Hunter, M.D. Ingram, Solid State Ionics 14 (1984) 31.

    Article  CAS  Google Scholar 

  7. J.R. Van Wazer, Phosphorus and Its Compounds, vol. I, Wiley-Interscience, New York, 1958.

    Google Scholar 

  8. S.W. Martin, Eur. J. Solid State Inorg. Chem. 28 (1991) 163.

    CAS  Google Scholar 

  9. L. Bih, S. Mohdachi, A. Nadiri, M. Mansori, M. Amalhay, O. Mykajlo, D. Kaynts, submitted to Opt. Mat. R. Commun.

    Google Scholar 

  10. L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui, D. Mezzane, B. Elouadi, J. Mol. Structure, 876 (2008) 194.

    Article  CAS  ADS  Google Scholar 

  11. A. Faivre, D. Viviani, J. Phalippou, Solid State Ionics, 1769 (2005) 325.

    Article  CAS  Google Scholar 

  12. A.K. Jonscher, Nature 256 (1975) 566.

    Article  CAS  ADS  Google Scholar 

  13. P. Maass, A. Bunde, M.D. Ingram, Phys. Rev. Lett. 68 (1992) 3064.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78 (1974) 639.

    Article  CAS  Google Scholar 

  15. K.L. Ngai, J.N. Mundy, H. Jain, G.B. Jollen beck, O. Kamert, Phys. Rev. B 39 (1989) 6169.

    Article  CAS  ADS  Google Scholar 

  16. K.L. Ngai, Phys. Rev. B 48 (1993) 13481.

    Article  CAS  ADS  Google Scholar 

  17. K.L. Ngai, J. Non-Cryst. Solids, 203 (1996) 232.

    Article  CAS  ADS  Google Scholar 

  18. J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace, Solid State Ionics 86-88 (1996) 497.

    Article  CAS  Google Scholar 

  19. S.L. Kraevskii, T.F. Evdokimov, U.F. Solonov, E. Shimshmentseva, Fiz. Khim. Stekla 4 (1978) 839; S.L. Kraevskii, U.F. Solonov, Glass Phys. Chem. 32 (2006) 629.

    Google Scholar 

  20. L. Bih, M. El Omari, J.M. Réau, A. Nadiri, A. Yacoubi, M. Haddad, Mat. Lett. 50 (2001) 308.

    Article  CAS  Google Scholar 

  21. G.D.L.K. Jayasinghe, M.A.K.L. Disanayake, P.W.S.K. Bandarayake, J.L. Souquet, D. Foscallo, Solid State Ionics 121 (1999) 19.

    Article  CAS  Google Scholar 

  22. R.J. Barczynski, L. Murawski, J. Non-Cryst. Solids 307-310 (2002) 1055.

    Article  CAS  ADS  Google Scholar 

  23. J.E. Garbarczyk, M. Wasiucionek, B. Wnetrzewski, W. Jakubowski, Phys. Status. Solidi (a), 156 (1996) 441.

    Article  CAS  Google Scholar 

  24. P. Subbalakshmi, N. Veeraiah, J. Phys. Chem. Solids 284 (2003) 1027.

    Article  ADS  CAS  Google Scholar 

  25. M.C. Ungureanu. M. Lévy, J.L. Souquet, Solid State Ionics 4 (1998) 200.

    CAS  Google Scholar 

  26. J.D. Isard, J. Non-Cryst. Solids 1 (1969) 235.

    Article  CAS  ADS  Google Scholar 

  27. D.E. Day, J. Non-Cryst. Solids 21 (1976) 343.

    Article  CAS  ADS  Google Scholar 

  28. M.D. Ingram, Phys. Chem. Glasses 28 (1987) 215.

    CAS  Google Scholar 

  29. V. Belostotsky, J. Non-Cryst. Solids 353 (2007) 1078.

    Article  CAS  ADS  Google Scholar 

  30. G.N. Greaves, Philos. Mag. B 60 (1989) 793.

    Article  CAS  Google Scholar 

  31. A. Bunde, M.D. Ingram, P. Maass, K.L. Ngai, J. Phys. A 24 (1991) 2881.

    Article  Google Scholar 

  32. A.H. Dietzel, Phys. Chem. Glasses 24 (1983) 172.

    CAS  Google Scholar 

  33. Y. Gao, Chem. Phys. Lett. 417 (2006) 430.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Bih, L., Mezzane, D., Nadiri, A., Bih, H., Mansori, M., Amalhay, M. (2008). Ionic Transport Behavior in Na2SO4-Li2O-MoO3-P2O5 Glassy System. In: Luk'yanchuk, I.A., Mezzane, D. (eds) Smart Materials for Energy, Communications and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8796-7_11

Download citation

Publish with us

Policies and ethics