Skip to main content

Application of Bacterial Swimming and Chemotaxis for Enhanced Bioremediation

  • Chapter
Emerging Environmental Technologies

Abstract

Contaminated soil and ground water persistently threatens drinking-water supplies, and is difficult and expensive to remediate. In situ bioremediation is an effective remediation strategy, but is often limited by inadequate distribution of bacteria throughout a contaminated region. Bacterial chemotaxis describes the ability of bacteria to sense chemical concentration gradients in their environment, and preferentially swim toward optimal concentrations of chemicals that are beneficial to their survival. This mechanism may greatly increase the efficiency of ground-water remediation technologies by enhancing bacterial mixing within contaminated zones. Many of the native soil-inhabiting bacteria that degrade common environmental pollutants also exhibit chemotaxis toward these compounds. In this paper, we present a review of bacterial chemotaxis to recalcitrant ground-water contaminants, including relevant techniques for mathematically quantifying chemotaxis, and propose improvements to field-scale bioremediation methods using chemotactic bacteria. By exploiting the degradative and chemotactic properties of bacteria, we can potentially improve both the economics and the efficiency of in situ bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.S. EPA, Safe Drinking Water Act, in Section 1429, Ground Water Report to Congress. 1999.

    Google Scholar 

  2. U.S. EPA, Recommendations from the EPA Ground Water Task Force. 2007, United States Environmental Protection Agency.

    Google Scholar 

  3. U.S. EPA, Guidance for evaluating the technical impracticality of groundwater restoration, in Office of Solid Waste and Emergency Response. 1993, EPA: Washington, DC. p. Directive 9234.2-25.

    Google Scholar 

  4. Herbes, S.E. and L.R. Schwall, Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl. Environ. Microbiol., 1978. 35(2): pp. 306–316.

    CAS  Google Scholar 

  5. Pandey, G. and R.K. Jain, Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl. Environ. Microbiol., 2002. 68(12): pp. 5789–5795.

    Article  CAS  Google Scholar 

  6. Bedient, P.B., H.S. Rifai, and C.J. Newell, Ground water Contamination: Transport and Remediaton. Second edition, 1997, New Jersey: Prentice Hall PTR.

    Google Scholar 

  7. Parales, R.E. and C.S. Harwood, Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol., 2002. 5(3): pp. 266–273.

    Article  CAS  Google Scholar 

  8. Ford, R.M. and R.W. Harvey, Role of chemotaxis in the transport of bacteria through saturated porous media. Adv. Water Resour., 2007. 30(6–7): pp. 1608–1617.

    Article  Google Scholar 

  9. Collins, L.D. and A.J. Daugulis, Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor. Appl. Microbiol. Biotechnol. 1999. 52(3): pp. 354–359.

    Article  CAS  Google Scholar 

  10. Kim, D.J., et al., Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl. Microbiol. Biotechnol., 2005. 69(4): pp. 456–462.

    Article  CAS  Google Scholar 

  11. Hoch, J.A., Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol., 2000. 3(2): pp. 165–170.

    Article  CAS  Google Scholar 

  12. Childers, S.E., S. Ciufo, and D.R. Lovley, Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 2002. 416(6882): pp. 767–769.

    Article  CAS  Google Scholar 

  13. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell. Fourth edition, 2002, New York: Garland Science Publishing. 15:1-15:87 .

    Google Scholar 

  14. Armitage, J.P. and R. Schmitt, Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? Microbiology, 1997. 143(12): pp. 3671–3682.

    Article  CAS  Google Scholar 

  15. Lewus, P. and R.M. Ford, Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays. Biotechnol. Bioeng., 2001. 75(3): pp. 292–304.

    Article  CAS  Google Scholar 

  16. Adler, J., Chemotaxis in bacteria. Science, 1966. 153(737): pp. 708–716.

    Article  CAS  Google Scholar 

  17. Adler, J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol., 1973. 74(1): pp. 77–91.

    CAS  Google Scholar 

  18. Ford, R.M., B.R. Phillips, J.A. Quinn, and D.A. Lauffenburger, Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped-flow diffusion chamber assay. Biotechnol. Bioeng., 1991. 37(7): pp. 647–660.

    Article  CAS  Google Scholar 

  19. Yu, H.S. and M. Alam, An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett., 1997. 156(2): pp. 265–269.

    Article  CAS  Google Scholar 

  20. Parales, R.E., J.L. Ditty, and C.S. Harwood, Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol., 2000. 66(9): pp. 4098–4104.

    Article  CAS  Google Scholar 

  21. Olson, M.S., et al., Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol., 2004. 38(14): pp. 3864–3870.

    Article  CAS  Google Scholar 

  22. Bhushan, B., et al., Chemotaxis and biodegradation of 3-methyl- 4-nitrophenol by Ralstonia sp. SJ98. Biochem. Biophys. Res. Commun., 2000. 275(1): pp. 129–133.

    Article  CAS  Google Scholar 

  23. Harwood, C.S., et al., Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol., 1994. 176(21): pp. 6479–6488.

    CAS  Google Scholar 

  24. Pandey, G., et al., Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem. Biophys. Res. Commun., 2002. 299(3): pp. 404–409.

    Article  CAS  Google Scholar 

  25. Samanta, S.K., et al., Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem. Biophys. Res. Commun., 2000. 269(1): pp. 117–123.

    Article  CAS  Google Scholar 

  26. Lovely, P.S. and F.W. Dahlquist, Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol., 1975. 50 : pp. 476–496.

    Google Scholar 

  27. Berg, H.C., How to track bacteria. Rev. Sci. Instrum., 1971. 42(6): pp. 868–871.

    Article  CAS  Google Scholar 

  28. Ford, R.M. and D.A. Lauffenburger, A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures. Math. Biosci., 1992. 109(2): pp. 127–149.

    Article  CAS  Google Scholar 

  29. Segel, L.A., I. Chet, and Y. Henis, A simple quantitative assay for bacterial motility. J. Gen. Microbiol., 1977. 98(2): pp. 329–337.

    CAS  Google Scholar 

  30. Chen, K.C., R.M. Ford, and P.T. Cummings, Mathematical models for motile bacterial transport in cylindrical tubes. J. Theor. Biol., 1998. 195(4): pp. 481–504.

    Article  CAS  Google Scholar 

  31. Pedit, J.A., et al., Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol. Bioeng., 2002. 78(6): pp. 626–634.

    Article  CAS  Google Scholar 

  32. Olson, M.S., et al., Mathematical modeling of chemotactic bacterial transport through a two-dimensional heterogeneous porous medium. Bioremediation J., 2006. 10(1–2): pp. 1–11.

    Google Scholar 

  33. Bhushan, B., et al., Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem. Biophys. Res. Commun., 2004. 316(3): pp. 816–821.

    Article  CAS  Google Scholar 

  34. Durant, N.D., L.P. Wilson, and E.J. Bouwer, Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant. J. Contam. Hydrol., 1995. 17: pp. 213–237.

    Google Scholar 

  35. Grimm, A.C. and C.S. Harwood, Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol., 1997. 63(10): pp. 4111–4115.

    CAS  Google Scholar 

  36. Samanta, S.K. and R.K. Jain, Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate. Can. J. Microbiol., 2000. 46(1): pp. 1–6.

    Article  CAS  Google Scholar 

  37. Paul, D., R. Singh, and R.K. Jain, Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ. Microbiol., 2006. 8(10): pp. 1797–1804.

    Article  CAS  Google Scholar 

  38. Harwood, C.S., R.E. Parales, and M. Dispensa, Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol., 1990. 56(5): pp. 1501–1503.

    CAS  Google Scholar 

  39. Harwood, C.S., A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J. Bacteriol., 1989. 171(9): pp. 4603–4608.

    CAS  Google Scholar 

  40. Samanta, S.K., O.V. Singh, and R.K. Jain, Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnol., 2002. 20(6): pp. 243–248.

    Article  CAS  Google Scholar 

  41. Hilpert, M., Lattice-Boltzmann model for bacterial chemotaxis. J. Math. Biol., 2005. 51(3): pp. 302–332.

    Article  Google Scholar 

  42. Law, A.M. and M.D. Aitken, Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl. Environ. Microbiol., 2003. 69(10): pp. 5968–5973.

    Article  CAS  Google Scholar 

  43. Law, A.M. and M.D. Aitken, Continuous-flow capillary assay for measuring bacterial chemotaxis. Appl. Environ. Microbiol., 2005. 71(6): pp. 3137–3143.

    Article  CAS  Google Scholar 

  44. Marx, R.B. and M.D. Aitken, Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl. Environ. Microbiol., 1999. 65(7): pp. 2847–2852.

    CAS  Google Scholar 

  45. Marx, R.B. and M.D. Aitken, A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol. Bioeng., 2000. 68(3): pp. 308–315.

    Article  CAS  Google Scholar 

  46. Marx, R.B. and M.D. Aitken, Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ. Sci. Technol., 2000. 34(16): pp. 3379–3383.

    Article  CAS  Google Scholar 

  47. Long, W. and M. Hilpert, Analytical solutions for bacterial energy taxis (chemotaxis): Traveling bacterial bands. Adv. Water Resour., 2007. 30(11): pp. 2262–2270.

    Article  Google Scholar 

  48. Barton, J.W. and R.M. Ford, Determination of effective transport coefficients for bacterial migration in sand columns. Appl. Environ. Microbiol., 1995. 61(9): pp. 3329–3335.

    CAS  Google Scholar 

  49. Olson, M.S., et al., Mathematical modeling of chemotactic bacterial transport through a two-dimensional heterogeneous porous medium. Bioremediation J., 2006. 10(1): pp. 13–23.

    Article  Google Scholar 

  50. Bashan, Y. and G. Holguin, Root-to-root travel of the beneficial bacterium azospirillum brasilense. Appl. Environ. Microbiol., 1994. 60(6): pp. 2120–2131.

    Google Scholar 

  51. Soby, S. and K. Bergman, Motility and chemotaxis of rhizobium meliloti in soil. Appl. Environ. Microbiol., 1983. 46(5): pp. 995–998.

    Google Scholar 

  52. Witt, M.E., et al., Motility-enhanced bioremediation of carbon tetrachloride-contaminated aquifer sediments. Environ. Sci. Technol., 1999. 33(17): pp. 2958–2964.

    Article  CAS  Google Scholar 

  53. Lanning, L.M., R.M. Ford, and T. Long, Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Biotechnol. Bioeng., 2008. 100(4): pp. 653–663.

    Google Scholar 

  54. U.S. EPA, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128, 1998.

    Google Scholar 

  55. U.S. EPA, Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications. EPA 542-R-00-008, 2000.

    Google Scholar 

  56. Kim, H.-S. and P.R. Jaffe, Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene. Water Res., 2007. 41(10): pp. 2089–2100.

    Article  CAS  Google Scholar 

  57. Harwood, C.S., M. Rivelli, and L.N. Ornston, Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacteriol., 1984. 160(2): pp. 622–628.

    CAS  Google Scholar 

  58. Lopez-de-Victoria, G. and C.R. Lovell, Chemotaxis of azospirillum species to aromatic compounds. Appl. Environ. Microbiol., 1993. 59(9): pp. 2951–2955.

    CAS  Google Scholar 

  59. Dharmatilake, A.J. and W.D. Bauer, Chemotaxis of rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol., 1992. 58(4): pp. 1153–1158.

    CAS  Google Scholar 

  60. Parke, D., M. Rivelli, and L.N. Ornston, Chemotaxis to aromatic and hydroaromatic acids: comparison of bradyrhizobium japonicum and rhizobium trifolii. J. Bacteriol., 1985. 163(2): pp. 417–422.

    CAS  Google Scholar 

  61. Hawkins, A.C. and C.S. Harwood, Chemotaxis of ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol., 2002. 68(2): pp. 968–972.

    Article  CAS  Google Scholar 

  62. Roush, C.J., C.M. Lastoskie, and R.M. Worden, Denitrification and chemotaxis of pseudomonas stutzeri KC in porous media. J. Environ. Sci. Health, Part A, 2006. 41(6): pp. 967–983.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh, R., Olson, M.S. (2008). Application of Bacterial Swimming and Chemotaxis for Enhanced Bioremediation. In: Shah, V. (eds) Emerging Environmental Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8786-8_7

Download citation

Publish with us

Policies and ethics