Skip to main content

Synthesis, Characterization, and Application of Magnetic Nanocomposites for the Removal of Heavy Metals from Industrial Effluents

  • Chapter
Emerging Environmental Technologies

Abstract

Magnetic nanocomposites with tailored surface functionalities have found a wide range of applications, including biological cell separation, waste remediation, gas purification, and raw material recovery from complex multiphase systems. The challenge to magnetic nanocomposite particles for these applications is to synthesize the particles of strong magnetic properties with high density of reactive functional groups, diversity of functionalities, and durability of surface films. In this chapter, the research and development of magnetic nanocomposite particles for applications to industrial effluent treatment are reviewed. Molecular self-assembly (SA), direct silanation, and mesoporous silica coating on magnetic particles were developed for the preparation of magnetic nanocomposites.

In SA, 16-mercaptohexadecanoic acid was anchored onto the γ-Fe2O3 surface through chemical bonding between the carboxylic head group of the surfactant and iron on γ-Fe2O3 surface, leaving the thiol or disulfide groups reactive. In the direct silanation, 3-aminopropyl triethoxy silane (APTES) films were silanized on bare magnetic particles from toluene and water. To improve the stability of silanized films, two-step silica-coating method was developed using sol–gel reaction, followed by dense-liquid silica coating. APTES films prepared by the silanation on the two-step silica-coated magnetic particles were found to be more robust than the ones silanized on bare magnetic particles. Furthermore, an innovative procedure of synthesizing mesoporous silica coatings on magnetic particles was developed to increase specific surface area of controlled pore sizes. This approach was based on the molecular templating, followed by sol–gel and templates removal. The resultant products showed a significant increase in specific surface area and were amenable for functionalization by silanation reaction.

The functionalized magnetic nanocomposites were effective for removal or recovery of heavy metal ions such as Cu2+, Zn2+, Ni2+, Ag+, and Hg2+ from aqueous solutions. Loaded metal ions could be stripped off by acid washing. Selective separation of different metal ions was achieved by controlling the solution pH. Magnetic nanocomposites particles with reactive functional groups have great potential applications in industrial, biological, and pharmacological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B.J. (Ed.) (1995) Heavy Metals in Soils. Chapman and Hall, Glasgow, UK. Chapters 6, 8, 9 and 11.

    Google Scholar 

  2. McDonald, D. G., Grandt, A. F. (1981) Limestone – Lime Treatment of Acid Mine Drainage-Full Scale. EPA Project Summary. EPA-600/S7-81-033.

    Google Scholar 

  3. Yamamura, S. (2000) Drinking Water Guidelines and Standards, World Health Organization, Geneva, Switzerland, http://www.who.int/water_sanitation_health/dwq/arsenicun5.pdf

    Google Scholar 

  4. Maximum Contaminant Level Goals and National Primary Drinking Water Regulation for Lead and Copper; Proposed Rule (1996) http://www.epa.gov/EPA-WATER/1996/April/Day-12/pr-20958DIR/pr-20958.txt.html

    Google Scholar 

  5. Nuñez, L., Kaminski, M. D. (1998) Chem. Technol. 9, 41.

    Google Scholar 

  6. Xu, Z., Liu, Q., Finch, J. A. (1997) Appl. Surf. Sci. 120, 269.

    Article  CAS  Google Scholar 

  7. Shiraishi, Y., Nishimura, G., Hirai, T., Komasawa, I. (2002) Ind. Eng. Chem. Res. 41, 5065.

    Article  CAS  Google Scholar 

  8. Lee, B., Kim, Y., Lee, H., Yi, J. (2001) Micropor. Mesopor. Mater 50, 77.

    Article  CAS  Google Scholar 

  9. Stumm, W., Morgan, J. J. (1995) Aquatic Chemistry, Jon Wiley & Sons, Inc., New York, 804.

    Google Scholar 

  10. Lee, J. S., Gomes-Salazar, S., Tavlarides, L. L. (2001) React. Funct. Polym. 49, 159.

    Article  CAS  Google Scholar 

  11. Yu, M., Tian, W., Sun, D., Shen, W., Wang, G., Xu, N. (2001) Anal. Chim. Acta. 428, 209.

    Article  CAS  Google Scholar 

  12. Nam, K. H., Tavlarides, L. L. (2003) Solvent Extr. Ion Exc., 21, 899.

    Article  CAS  Google Scholar 

  13. Pinfold, T. A. (1972) Ion Flotation, in Robert Lemlich (Ed.), Adsorptive Bubble Separation Techniques, Academic Press, New York.

    Google Scholar 

  14. Nicol, S. K., Galvin, K. P. and Engel, M. D. (1992) Miner. Eng. 5, 1259.

    Article  CAS  Google Scholar 

  15. Berg, E. W., Downey, D. M. (1980) Anal. Chim. Acta 120, 273.

    Article  Google Scholar 

  16. Willians, R. A. (Ed.). (1992) Colloid and Surface Engineering: Application.c in the Process Industries, Butterworth Heinemann, Oxford, UK. Chapter 8.

    Google Scholar 

  17. Booker, N. A., Keir, D., Priestley, A., Rithchie, C. D., Sudarmana, D. L., Woods, M. A. (1991) Water Sci. Technol. 123, 1703.

    Google Scholar 

  18. Sing, K. S. (1994) Technol. Profile 21, 60.

    Google Scholar 

  19. Safarik, I., Safarikova, M., Buricova, V. (1995) Collect. Czech. Chem. Commun. 60, 1448.

    Article  CAS  Google Scholar 

  20. Wu, R., Qu, J., Chen, Y. (2005) Water Res. 39, 630.

    Article  CAS  Google Scholar 

  21. Orbell, J. D., Godhino, L., Bigger, S. W., Nguyen, T. M., Ngeh, L. N. (1997) J. Chem. Edu. 74, 1446.

    Article  CAS  Google Scholar 

  22. Borai, E. H., El-Sofany, E. A., Morocos, T. N. (2007) Adsorption 13, 95.

    Article  CAS  Google Scholar 

  23. Feng, D., Aldrich, C., Tan, H. (2000) Hydrometallurgy 56, 359.

    Article  CAS  Google Scholar 

  24. Denizli, A., Özkan, G., Arica, M. Y. (2000) J. Appl. Polym. Sci. 78, 81.

    Article  CAS  Google Scholar 

  25. Duguet, E., Vasseur, S., Mornet, S., Devoisselle, J. M. (2006) Nanomedicine 1, 257.

    Article  Google Scholar 

  26. Gupta, A. K., Naregalkar, R. R., Vaidya, V. D., Gupta, M. (2007) Nanomedicin 2, 23.

    Article  CAS  Google Scholar 

  27. Gao, X., Yu, K. M. K., Tam, K. Y., Tsang, S. C. (2003) Chem. Commun. 24, 2998.

    Article  CAS  Google Scholar 

  28. Rudge, S. R., Kurtz, T. L., Vessely, C. R., Catterall, L. G., Williamson, D. L. (2000) Biomaterials 21, 1411.

    Article  CAS  Google Scholar 

  29. Wu, P., Xu, Z. (2005) Ind. Eng. Chem. Res. 44, 816.

    Article  CAS  Google Scholar 

  30. Skold, C. N. (2007) U.S. Patent 7,169,618.

    Google Scholar 

  31. Giaever, I. (1976) U.S. Patent 3,970,518.

    Google Scholar 

  32. Whitehead, R. A., Chagnon, M. S., Groman, E. V., Josephson, L. (1985) U.S. Patent 4,554,088.

    Google Scholar 

  33. Phanapavudhikul, P., Waters, J. A., Perez de Oritiz, E. S. (2003) J. Environ. Sci. Heal A 38, 2277.

    Article  CAS  Google Scholar 

  34. Liberti, P. A., Piccoli, S. P. (1996) U.S. Patent 5,512,332.

    Google Scholar 

  35. Liberti, P. A., Pino, M. A. (1997) U.S. Patent 5,597,531

    Google Scholar 

  36. Yen, S.-P. S., Rembaum, A., Molday, R. S. (1979) U.S. Patent 4,157,323.

    Google Scholar 

  37. Daniel, J.-C., Schuppiser, J.-L., Tricot, M. (1982) U.S. Patent 4,358,388.

    Google Scholar 

  38. Liu, X., Guan, Y., Ma, Z., Liu, H. (2004) Langmuir 20, 10278–10282.

    Article  CAS  Google Scholar 

  39. Pich, A., Bhattacharya, S., Ghosh, A., Adler, H.-J. P. (2005) Polymer 46, 4596.

    CAS  Google Scholar 

  40. Senyei, A. E., Widder, K. J. (1980) U.S. Patent 4,230,685.

    Google Scholar 

  41. Molday, R. S. (1984) U.S. Patent 4,452,773.

    Google Scholar 

  42. Owen, C. S., Silvia, J. C., D'Angelo, L., Liberti, P. A. (1989) U.S. Patent 4,795,698.

    Google Scholar 

  43. Palmacci, S., Josephson, L. (1993) U.S. Patent 5,262,176.

    Google Scholar 

  44. Ugelstad, J., Ellingsen, T., Berge, A., Helgee, O. B. (1987) U.S. Patent 4,654,267.

    Google Scholar 

  45. Groman, E. V., Josephson, L., Lewis, J. M. (1989) U.S. Patent 4,827,945.

    Google Scholar 

  46. Li, L., Fan, M., Brown, R. C., Leeuwen, J. V., Wang, J., Wang, W., Song, Y., Zhang, P. (2006) Crit. Rev. Env. Sci. Technol. 36, 405.

    Article  CAS  Google Scholar 

  47. Lu, A. H., Salabas, E. L., Schuth, F. (2007) Angew. Chem. Int. Edit. 46, 1222.

    Article  CAS  Google Scholar 

  48. Liu, Q. (1996) An innovative approach in magnetic carrier technology, PhD. Thesis, McGill University, Montreal.

    Google Scholar 

  49. Ulman, A. (1991) An Introduction to Ultrathin Organic Films and Langmuir-Blodgett to Self-Assembly, Academic, San Diego.

    Google Scholar 

  50. Pomerantz, M., Segmuller, A., Netzer, L., Sagiv, J. (1986) Thin Solid Films 132, 153.

    Article  Google Scholar 

  51. Netzer, L., Iscovici, R., Sagiv, J. (1983) Thin Solid Films 99, 235.

    Article  CAS  Google Scholar 

  52. Allara, D. L., Nuzzo, R. G. (1985) Langmuir 1, 52.

    Article  CAS  Google Scholar 

  53. Schlotter, N. E., Porter, M. D., Bright, T. B., Allara, D. L. (1986) Chem. Phys. Lett. 132, 93.

    Article  CAS  Google Scholar 

  54. Laibinis, P. E., Hickman, J. J., Wrighton, M. S., Whitesides, G. M. (1989) Science 245, 845.

    Article  CAS  Google Scholar 

  55. Bain, C. D., Troughton, E. B., Tao, Yu-Tai, Evall, J., Whitesides, G. M., Nuzzo, R. G. (1989) J. Am. Chem. Soc. 111, 321.

    Article  CAS  Google Scholar 

  56. Walczak, M. M., Chung, C., Stole, S. M., Widrig, C. A., Porter, M.D. (1991) J. Am. Chem. Soc. 113, 2370.

    Article  CAS  Google Scholar 

  57. Parikh, A. N., Allara, D. L., Azouz, I. B., Rondelez, F. (1994) J. Phys.Chem. 98, 7577.

    Article  CAS  Google Scholar 

  58. Yoon, R.-H., Flinn, D. H., Guzonas, D. A. (1994) Colloids Surf. 87, 163.

    Article  Google Scholar 

  59. Folkers, J. P., Gorman, L. B., Laibinis, P. E., Buchholz, S., Whitesides, G. M., Nuzzo, R. G. (1996) Langmuir 11, 813.

    Article  Google Scholar 

  60. Allara, D. L., Hebard, A. F., Padden, F. J., Nuzzo, R. G., Falcone, D. R. (1983) J. Vac. Sci. Technol. AI(2), 376.

    Google Scholar 

  61. Ihs, A., Liedberg, B. (1991) J. Colloid Interface Sci. 144, 283.

    Article  Google Scholar 

  62. Uvdal, K., Bodo, P., Liedberg, B. (1992) J. Colloid Interface Sci. 149, 163.

    Article  Google Scholar 

  63. Goss, C. A., Charych, D. H., Majda, M. (1991) Anal. Chem. 63, 85.

    Article  CAS  Google Scholar 

  64. Smith, E. L., Alves, L. A., Andergg, J. W., Porter, M. D., Siperko, L. M. (1992) Langmuir 8, 2707.

    Article  CAS  Google Scholar 

  65. Rozenfeld, O., Koltypin,Y., Bamnoker, H., Margel, S., Gedanken, A. (1994) Langmuir 10, 3919.

    Article  CAS  Google Scholar 

  66. Liu, Q., Friedlaender, F. (1994) J. Min. Eng. 7(4), 449.

    Article  CAS  Google Scholar 

  67. Molday, R. S., Mackenzie, D. (1982) J. Immunol. Meth. 52, 353.

    Article  CAS  Google Scholar 

  68. Saito, S. (Ed.). (1988) Fine Ceramics, Elsevier, Amsterdam.

    Google Scholar 

  69. Goldman, P. (1988) In: Electronic Ceramics: Properties, Deuices, and Applications, Levinson, L. M., (Ed.), Dekker, New York.

    Google Scholar 

  70. Sonti, S. V., Bose, A. (1995) J. Colloid Interface Sci. 170, 575.

    Article  CAS  Google Scholar 

  71. Liu, Q., Xu, Z. (1995) Langmuir 11, 4617–4622.

    Article  CAS  Google Scholar 

  72. Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. (1992) Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN.

    Google Scholar 

  73. Wood, R., Kim, D. S., Basilid, C. I., Yoon, R.-H. (1995) Colloids Surf. 94, 67.

    Article  Google Scholar 

  74. Zhong, C. H., Poter, M. D. (1994) J. Am. Chem. Soc.116, 11616.

    Article  CAS  Google Scholar 

  75. Plueddemann, E. P. (1985) In: Silane, Surfaces, and Interface, Leyden, D. E., (Ed.), Gordon and Breach Science Publisher, New York, 1–23.

    Google Scholar 

  76. Marquez, M., Grady, B. P., Robb, I. (2005) Colloid Surf. A, 266, 18.

    Article  CAS  Google Scholar 

  77. Nalaskowski, J., Drelich, J., Hupka, J., Miller, J. D. (2003) Langmuir 19, 5311.

    Article  CAS  Google Scholar 

  78. Ding, W. P., Meitzner, G. D., Iglesia, E. (2002) J. Catal. 206, 14.

    Article  CAS  Google Scholar 

  79. Evans, J., Zaki, A. B., El-Sheikh, M. Y., El-Safty, S. A. (2000) J. Phys. Chem. B 104, 10271.

    Article  CAS  Google Scholar 

  80. Brunel, D. (1999) Micropor. Mesopor. Mater 27, 329.

    Article  CAS  Google Scholar 

  81. Lee, S. Y., Harris, M. T. (2006) J. Colloid Interface Sci. 293, 401.

    Article  CAS  Google Scholar 

  82. Chagnon, M. S., Groman, E. V., Josephson, L., Whitehead, R. A. (1987) U.S. Patent 4,695,393.

    Google Scholar 

  83. Iler, R. K. (1973) Surf. Colloid Sci. 6, 1–100.

    CAS  Google Scholar 

  84. Maure, R. E. (1986) J. Vac. Sci. Technol. A 4, 3002.

    Article  Google Scholar 

  85. Niwa, M., Katada, N., Murakami, Y. (1990) J. Phys. Chem. 94, 6441.

    Article  CAS  Google Scholar 

  86. Atik, M., Zarzycki, J. (1994) J. Mater. Sci. Lett. 13, 1301.

    Article  CAS  Google Scholar 

  87. Adamson, A. W. (1990) Physical Chemistry of Surfaces, 5th Ed., John Wiley, New York, 297.

    Google Scholar 

  88. Stokes, R. J., Evans, D. F. (1996) Fundamentals of Interfacial Engineering, John Wiley, New York, 65.

    Google Scholar 

  89. Liu, Q., Xu, Z., Finch, J. A., Egerton, R. (1998) Chem. Mater. 10, 3936–3940.

    Article  CAS  Google Scholar 

  90. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S. (1992). Nature 359, 710.

    Article  CAS  Google Scholar 

  91. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. (1992) J. Am. Chem. Soc. 114, 10834.

    Article  CAS  Google Scholar 

  92. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. (1992) U.S. Patent 5,098,684.

    Google Scholar 

  93. Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C. (1990) Bull. Chem. Soc. Jpn. 63, 988.

    Article  CAS  Google Scholar 

  94. Inagaki, S., Fukushima, Y., Kuroda, K. J. (1993) Chem. Soc. Chem. Commun. 8, 680.

    Google Scholar 

  95. Stein, A., Melde, B. J., Schroden, R. C. (2000) Adv. Mater. 12, 1403.

    Article  CAS  Google Scholar 

  96. Berggren, A., Palmqvist, A. E. C., Holmberg, K. (2005) Soft Matter 1, 219.

    Article  CAS  Google Scholar 

  97. Hoffmann, F., Cornelius, M., Morell, J., Froba, M. (2006) J. Nanosci. Nanotechnol. 6, 265.

    CAS  Google Scholar 

  98. Ford, D. M., Simanek, E. E., Shantz, D. F. (2005) Nanotechnology 16, S458.

    Article  CAS  Google Scholar 

  99. Hartmann, M. (2005) Chem. Mater. 17, 4577.

    Article  CAS  Google Scholar 

  100. Tsang, S. C., Yu, C. H., Gao, X., Tam, K. (2006) J. Phys. Chem. B 110, 16914.

    Article  CAS  Google Scholar 

  101. Ariga, K. (2004) J. Nanosci. Nanotechnol. 4, 23.

    Article  CAS  Google Scholar 

  102. Shi, J. L.,. Hua, Z. L, Zhang, L. X. (2004) J. Mater. Chem. 14, 795

    Article  CAS  Google Scholar 

  103. Stein, A. (2003) Adv. Mate. 15, 763

    Article  CAS  Google Scholar 

  104. Sanchez, C., Lebeau, B., Chaput, F., Boilot, J. P. (2003) Adv. Mater. 15, 1969.

    Article  CAS  Google Scholar 

  105. Davis, M. E. (2002) Nature 417, 813

    Article  CAS  Google Scholar 

  106. de Vos, D. E., Dams, M., Sels, B. E., Jacobs, P. A. (2002) Chem. Rev. 102, 3615

    Article  CAS  Google Scholar 

  107. Schüth, F., Schmidt, W. (2002) Adv. Mater. 14, 629.

    Article  Google Scholar 

  108. Cardin, D. J. (2002) Adv. Mater. 14, 553.

    Article  CAS  Google Scholar 

  109. Beck, J. S., Vartali, J. C. (1996) Curr. Opin. Solid State Mater. Sci. 1, 76.

    Article  CAS  Google Scholar 

  110. Huo, Q., Margolese, D., Ciesla, U., Feng, P. Y., Gier, T. E., Sieger, P., Leao, R., Petroff, P. M., Schuth, F., Stucky, G. D. (1994) Nature 368, 321.

    Article  Google Scholar 

  111. Jones, C. M., Tsuji, K., Davis, M. (1998) Nature 393, 52.

    Article  CAS  Google Scholar 

  112. Feng, X., Fryxell, G. E., Wang, L.-Q., Kim, A.Y., Liu, J., Kemner, K. M. (1997) Science 276, 923.

    Article  CAS  Google Scholar 

  113. Israelachvili, J. N., Mitchell, D. J., Ninham, B. W. (1976) J. Chem. Soc. Faraday Trans 72, 525.

    Google Scholar 

  114. Israelachvili, J. N. (1992) Intermolecular and Surface Forces, (2nd Ed.), Academic Press, London.

    Google Scholar 

  115. Huo, Q., Margolese, D. I., Stucky, G. D. (1996) Chem. Mater. 8, 1147.

    Article  CAS  Google Scholar 

  116. Øye, G., Sjöblom, J., Stöcker, M. (1999) Micropor. Mesopor. Mater 27, 171.

    Article  Google Scholar 

  117. Kleitz, F., Blanchard, J., Zibrowius, B., Schueth, F., Aagren, P., Linden, M. (2002) Langmuir 18, 4963.

    Article  CAS  Google Scholar 

  118. Aagren, P., Linden, M., Rosenholm, J. B., Blanchard, J., Schueth, F., Amenitsch, H. (2000) Langmuir 16, 8809.

    Article  CAS  Google Scholar 

  119. Di Renzo, F., Testa, F., Chen, J. D., Cambon, H., Galarneau, A., Plee, D., Fajula, F. (1999) Micropor. Mesopor. Mater 28, 437.

    Article  Google Scholar 

  120. Yang, H., Coombs, N., Sokolov, I., Ozin, G. A. (1996) Nature 381, 589.

    Article  CAS  Google Scholar 

  121. Wang, L. Z., Yu, J., Shi, J. L., Yan, D. S. (1999) J. Mater. Sci. Lett. 18, 1171.

    Article  CAS  Google Scholar 

  122. Wu, P., Zhu, J., Xu, Z. (2004) Adv. Func. Mater. 14, 345.

    Article  CAS  Google Scholar 

  123. Dong, J., Xu, Z. (2006) In: Functional Fillers and Nanoscale Minerals, SME, Inc., Littleton, CO, 241–252.

    Google Scholar 

  124. Mercier, L., Pinnavaia, T. J. (1998) Micropor. Mesopor. Mater 20, 101.

    Article  CAS  Google Scholar 

  125. Mercier, L., Pinnavaia, T. J. (1998) Environ. Sci. Technol. 32, 2749.

    Article  CAS  Google Scholar 

  126. Lim, M. H., Blanford, C.F., Stein, A. (1998) Chem. Mater. 10, 467.

    Article  CAS  Google Scholar 

  127. Brown, J., Mercier, L., Pinnavaia, T. J. (1999) Chem. Commun. 1, 69–70.

    Article  Google Scholar 

  128. Brown, J., Richer, R., Mercier, L. (2000) Micropor. Mesopor. Mater 37, 41.

    Article  CAS  Google Scholar 

  129. Antochshuk, V., Jaroniec, M. (2002) Chem. Commun. 3, 258.

    Article  CAS  Google Scholar 

  130. Leyden, D. E., Luttrell, G. H. (1975) Anal. Chem. 47, 1612.

    Article  CAS  Google Scholar 

  131. Arkels, B. (1992) Silane coupling agent chemistry, in silicon compounds, register and review, petrarch system catalogue, 59.

    Google Scholar 

  132. Goelzhauser, A., Panov, S., Mast, M., Schertel, A., Grunze, M., Woell, Ch. (1995) Surf. Sci. 334, 235.

    Article  Google Scholar 

  133. Lund, H., Baizer, M. M. (1991) Organic Electrochemistry, Marcel Dekker, Inc. New York, 581.

    Google Scholar 

  134. Ihara, H., Okazaki, S., Ohmori, K., Uemura, S., Hirayama, C., Nagaoka, S. (1998) Anal. Sci. 14, 349.

    Article  CAS  Google Scholar 

  135. Kanazawa, H., Kashiwase, Y., Yamamoto, K., Matsushima, Y. (1997) Anal. Chem. 69, 823.

    Article  CAS  Google Scholar 

  136. Takafuji, M., Dong, W., Goto, Y., Sakurai, T., Nagaoka, S., Ihara, H. (2002) Polym. J. 34, 437.

    Article  CAS  Google Scholar 

  137. Takafuji, M., Ide, S., Ihara, H., Xu, Z. (2004) Chem. Mater 16, 1977.

    Article  CAS  Google Scholar 

  138. Gold, D. H., Gregor, H. P. (1960) J. Phys. Chem. 64, 1464

    Article  CAS  Google Scholar 

  139. Liu, K. J., Gregor, H. P. (1965) J. Phys. Chem. 69, 1252

    Article  CAS  Google Scholar 

  140. Tanford, C., Wagner, M. L. (1953) J. Am. Chem. Soc. 75, 434.

    Article  CAS  Google Scholar 

  141. Gold, D. H., Gregor, H. P. (1960) J. Phys. Chem. 64, 1461.

    Article  CAS  Google Scholar 

  142. Molina, M. J., Gomez-Anton, M. R., Rivas, B. L., Maturana, H. A., Pierola, I. F. (2001) J. Appl. Polym. Sci. 79, 1467

    Article  CAS  Google Scholar 

  143. Shiraishi, Y., Nishimura, G., Hirai, T., Komasawa, I. (2002) Ind. Eng. Chem. Res. 41, 5065.

    Article  CAS  Google Scholar 

  144. Dong, J., Xu, Z., Wang, F. (2008) Appl. Surf. Sci. 254, 3522.

    Google Scholar 

  145. Parida, S. K., Dash, S., Patel, S., Mishra, B. K. (2006) Adv. Colloid Interface Sci. 121, 77.

    Article  CAS  Google Scholar 

  146. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., Terasaki, O. (1999) J. Am. Chem. Soc. 121, 9611.

    Article  CAS  Google Scholar 

  147. Asefa, T., MacLachlan, M. J., Coombs, N., Ozin, G. A. (1999) Nature 402, 867.

    CAS  Google Scholar 

  148. Melde, B. J., Holland, B. T., Blanford, C. F., Stein, A. (1999) Chem. Mater 11, 3302.

    Article  CAS  Google Scholar 

  149. Vinu, A., Hossain, K. Z., Ariga, K. (2005) J. Nanosci. Nanotechnol. 5/3, 347.

    Article  CAS  Google Scholar 

  150. Hoffmann, F., Cornelius, M., Morell, J., Froba, M. (2006) J. Nanosci. Nanotechnol. 6, 265.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Xu, Z., Dong, J. (2008). Synthesis, Characterization, and Application of Magnetic Nanocomposites for the Removal of Heavy Metals from Industrial Effluents. In: Shah, V. (eds) Emerging Environmental Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8786-8_6

Download citation

Publish with us

Policies and ethics