Skip to main content

Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology

  • Chapter
Emerging Environmental Technologies

Abstract

Biomass-based renewable energy, which utilizes biomass derived from photosynthesis, could sustainably provide 67–450 EJ of energy annually. Biomass in organic wastes, for example, can annually provide 7.5 EJ of energy, and utilization of organic wastes locally as an energy source can prevent environmental pollution and reduce the energy losses associated with transportation. The technological challenge is to sustainably capture this biomass energy without creating serious environmental or social damage.

A microbial fuel cell (MFC) is a novel biomass-based technology that marries microbiological catalysis to electrochemistry. In an MFC, bacteria present at the fuel-cell anode catalyze the oxidation of diverse organic fuel sources, including domestic wastewater, animal manures, and plant residues. As an electrochemical process, an MFC converts the energy value stored in the organic fuel directly to electrical energy, avoiding combustion and combustion-associated contaminants. The main product at the anode is CO2 that is carbon neutral. When oxygen is the oxidant at the fuel-cell cathode, an MFC produces only H2O. An MFC is an attractive renewable energy technology, because it produces electricity at the same time it treats wastes, and it does so without producing harmful byproducts.

We introduce MFCs in the context of the general cycle for biomass-based renewable energy technology. Tracking of carbon oxidation state highlights the distinctly different approach that an MFC takes with respect to biofuels. Then, we review some of recent progress in MFC research, with an emphasis on mathematical modeling. At last, we conclude with our perspectives on biomass-based renewable energy by comparing the MFC with two more mature technologies for generating biofuels: bioethanol and anaerobic digestion to methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldemberg, J. and T.B. Johansson (2004). World energy assessment overview: 2004 update. United Nations Development Programme, New York.

    Google Scholar 

  2. Hall, D.O. and F. Rosillo-Calle (1998). In Survey of Energy Resources, 18th Edn. World Energy Council, London, 227–241.

    Google Scholar 

  3. Chynoweth, D.P., J.M. Owens, and R. Legrand (2001). Renewable methane from anaerobic digestion of biomass. Renew Energ 22, 1–8.

    Article  CAS  Google Scholar 

  4. Energy Information Administration (2005). Annual energy outlook: with projection to 2030. U.S. Department of Energy, Washington, DC.

    Google Scholar 

  5. U.S. Environmental Protection Agency (2006). Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2006. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  6. Borjesson, P. and M. Berglund (2006). Environmental systems analysis of biogas systems – Part 1: fuel-cycle emissions. Biomass Bioeng 30, 469–485.

    Article  CAS  Google Scholar 

  7. Xiao, J.H. and J.M. VanBriesen (2006). Expanded thermodynamic model for microbial true yield prediction. Biotechnol Bioeng 93, 110–121.

    Article  CAS  Google Scholar 

  8. Wyman, C.E., B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, and Y.Y. Lee (2005). Coordinated development of leading biomass pretreatment technologies. Biores Technol 96, 1959–1966.

    Article  CAS  Google Scholar 

  9. Angenent, L.T., K. Karim, M.H. Al-Dahhan, and R. Domiguez-Espinosa (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22, 477–485.

    Article  CAS  Google Scholar 

  10. Kim, B.H., H.J. Kim, M.S. Hyun, and D.H. Park (1999). Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9, 127–131.

    Article  Google Scholar 

  11. Kim, H.J., H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, and B.H. Kim (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme Microb Technol 30, 145–152.

    Article  CAS  Google Scholar 

  12. Bond, D.R., D.E. Holmes, L.M. Tender, and D.R. Lovley (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485.

    Article  CAS  Google Scholar 

  13. Rabaey, K., N. Boon, S.D. Siciliano, M. Verhaege, and W. Verstraete (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70, 5373–5382.

    Article  CAS  Google Scholar 

  14. Liu, H., R. Ramnarayanan, and B.E. Logan (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38, 2281–2285.

    Article  CAS  Google Scholar 

  15. Torres, C.I., A. Kato Marcus, and B.E. Rittmann (2007). Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microb Biotechnol 77, 689–697.

    Google Scholar 

  16. Kim, B.H., H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang, J. Lee, and N.T. Phung (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63, 672–681.

    Article  CAS  Google Scholar 

  17. Kim, G.T., G. Webster, J.W.T. Wimpenny, B.H. Kim, H.J. Kim, and A.J. Weightman (2006). Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101, 698–710.

    Article  CAS  Google Scholar 

  18. Min, B., J.R. Kim, S.E. Oh, J.M. Regan, and B.E. Logan (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Res 39, 4961–4968.

    Article  CAS  Google Scholar 

  19. Zuo, Y., P.C. Maness, and B.E. Logan (2006). Electricity production from steam-exploded corn stover biomass. Energ Fuel 20, 1716–1721.

    Article  CAS  Google Scholar 

  20. Gorby, Y.A., S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson, and J.K. Fredrickson (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA 103, 11358–11363.

    Article  CAS  Google Scholar 

  21. Lee, H.S., P. Parameswaran, A. Kato Marcus, C.I. Torres, and B.E. Rittmann (2007). Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research 42, 1501–1510.

    Google Scholar 

  22. Ren, Z.Y., T.E. Ward, and J.M. Regan (2007). Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41, 4781–4786.

    Article  CAS  Google Scholar 

  23. McCarty, P.L. (1964). Anaerobic waste treatment fundamentals: Part I – Chemistry and microbiology. Public Works 95, 91–94.

    CAS  Google Scholar 

  24. Rozendal, R.A., H.V.M. Hamelers, R.J. Molenkmp, and J.N. Buisman (2007). Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41, 1984–1994.

    Article  CAS  Google Scholar 

  25. Torres, C.I., A. Kato Marcus, and B.E. Rittmann (2008). Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioengr 100, 872–881.

    Google Scholar 

  26. Fan, Y.Z., H.Q. Hu, and H. Liu (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41, 8154–8158.

    Article  CAS  Google Scholar 

  27. Rozendal, R.A., H.V.M. Hamelers, and C.J.N. Buisman (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40, 5206–5211.

    Article  CAS  Google Scholar 

  28. Logan, B.E., B. Hamelers, R. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey (2006). Microbial fuel cells: methodology and technology. Environ Sci Technol 40, 5181–5192.

    Article  CAS  Google Scholar 

  29. Bard, A.J. and L.R. Faulkner (2001). Electrochemical Methods: Fundamentals and Applications. 2nd ed. John Wiley, New York, xxi, 833.

    Google Scholar 

  30. Larminie, J., A. Dicks, and Knovel (2003). (Firm), Fuel Cell Systems Explained. 2nd ed. John Wiley, Chichester, West Sussex, xxii, 406.

    Google Scholar 

  31. Kato Marcus, A., C.I. Torres, and B.E. Rittmann (2007). Conduction based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98, 1171–1182.

    Article  CAS  Google Scholar 

  32. Rittmann, B.E. and P.L. McCarty (2001). Environmental biotechnology: principles and applications. McGraw-Hill Book Co., Boston, 754 pp.

    Google Scholar 

  33. VanBriesen, J.M. and B.E. Rittmann (2000). Mathematical description of microbiological reactions involving intermediates (vol 67, pg 35, 1999). Biotechnol Bioeng 68, 705–705.

    Article  CAS  Google Scholar 

  34. VanBriesen, J.M. (2002). Evaluation of methods to predict bacterial yield using thermodynamics. Biodegradation 13, 171–190.

    Article  CAS  Google Scholar 

  35. Cheng, S., H. Liu, and B.E. Logan (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40, 2426–2432.

    Article  CAS  Google Scholar 

  36. Liu, H., S.A. Cheng, and B.E. Logan (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39, 658–662.

    Article  CAS  Google Scholar 

  37. Fan, Y., H. Hu, and H. Liu (2007). Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171, 348–354.

    Article  CAS  Google Scholar 

  38. Ringeisen, B.R., E. Henderson, P.K. Wu, J. Pietron, R. Ray, B. Little, J.C. Biffinger, and J.M. Jones-Meehan (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40, 2629–2634.

    Article  CAS  Google Scholar 

  39. Esteve-Nunez, A., M. Rothermich, M. Sharma, and D. Lovley (2005). Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 7, 641–648.

    Article  CAS  Google Scholar 

  40. Bond, D.R. and D.R. Lovley (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69, 1548–1555.

    Article  CAS  Google Scholar 

  41. Whitman, W.B., D.C. Coleman, and W.J. Wiebe (1998). Prokaryotes: the unseen majority. P Natl Acad Sci USA 95, 6578–6583.

    Article  CAS  Google Scholar 

  42. Liu, H. and B.E. Logan (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38, 4040–4046.

    Article  CAS  Google Scholar 

  43. Rabaey, K. and W. Verstraete (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23, 291–298.

    Article  CAS  Google Scholar 

  44. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39, 3401–3408.

    Article  CAS  Google Scholar 

  45. Reguera, G., K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, and D.R. Lovley (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72, 7345–7348.

    Article  CAS  Google Scholar 

  46. Pham, T.H., N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, L. Vanhaecke, K. De Maeyer, M. Hofte, W. Verstraete, and K. Rabaey (2008). Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77, 1119–1129.

    Article  CAS  Google Scholar 

  47. Picioreanu, C., I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, and K. Scott (2007). A computational model for biofilm-based microbial fuel cells. Water Res 41, 2921–2940.

    Article  CAS  Google Scholar 

  48. Freguia, S., K. Rabaey, Z.G. Yuan, and J. Keller (2007). Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41, 2915–2921.

    Article  CAS  Google Scholar 

  49. Rozendal, R.A., H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, and C.J.N. Buisman (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31, 1632–1640.

    Article  CAS  Google Scholar 

  50. Lin, Y. and S. Tanaka (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69, 627–642.

    Article  CAS  Google Scholar 

  51. Kuyper, M., M.M.P. Hartog, M.J. Toirkens, M.J.H. Almering, A.A. Winkler, J.P. van Dijken, and J.T. Pronk (2005). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Fems Yeast Res 5, 399–409.

    Article  CAS  Google Scholar 

  52. Shapouri, H., J.A. Duffield, and M. Wang (2001). The energy balance of corn ethanol: an update. U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  53. Goolsby, D.A., W.A. Battaglin, B.T. Aulenbach, and R.P. Hooper (2001). Nitrogen input to the Gulf of Mexico. J Environ Qual 30, 329–336.

    Article  CAS  Google Scholar 

  54. Hey, D.L. (2002). Nitrogen farming: harvesting a different crop. Restor Ecol 10, 1–10.

    Article  Google Scholar 

  55. Goolsby, D.A., W.A. Battaglin, G.B. Lawrence, R.S. Artz, B.T. Aulenbach, R.P. Hooper, D.R. Keeney, and G.J. Strensland (1999). Flux and sources of nutrients in the Mississippi-Atchafalya river basins. National Oceanic and Atmospheric Administration, Washington, DC.

    Google Scholar 

  56. Graboski, M.S. (2002). Fossil energy use in the manufacture of corn ethanol. National Corn Growers Association, Chesterfield, Missouri, USA.

    Google Scholar 

  57. Committee on Water Implications of Biofuels Production in the United States (2007). Water Implications of Biofuels Production in the United States. National Research Council, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.8

About this chapter

Cite this chapter

Rittmann, B.E., Torres, C.I., Marcus, A.K. (2008). Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology. In: Shah, V. (eds) Emerging Environmental Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8786-8_1

Download citation

Publish with us

Policies and ethics