Skip to main content

Resistance proteins: scouts of the plant innate immune system

  • Review
  • Chapter
  • First Online:
Sustainable disease management in a European context

Abstract

Recognition of non-self in plants is mediated by specialised receptors that upon pathogen perception trigger induction of host defence responses. Primary, or basal, defence is mainly triggered by trans-membrane receptors that recognise conserved molecules released by a variety of (unrelated) microbes. Pathogens can overcome these basal defences by the secretion of specific effectors. Subsequent recognition of these effectors by specialised receptors (called resistance proteins) triggers induction of a second layer of plant defence responses. These responses are qualitatively similar to primary defence responses; however, they are generally faster and stronger. Here we give an overview of the predicted (domain) structures of resistance proteins and their proposed mode of action as molecular switches of plant innate immunity. We also highlight recent advances revealing that some of these proteins act in the plant nucleus as transcriptional co-regulators and that crosstalk can occur between members of different resistance protein families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ade, J., DeYoung, B. J., Golstein, C., & Innes, R. W. (2007). Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the United States of America, 104, 2531–2536.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, M., & Takken, F. L. W. (2006). Update on the domain architectures of NLRs and R proteins. Biochemical and Biophysical Research Communications, 339, 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Aravind, L. (2000). The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends in Biochemical Sciences, 25, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Ausubel, F. M. (2005). Are innate immune signaling pathways in plants and animals conserved. Nauret Immunoogyl, 6, 973–979.

    CAS  Google Scholar 

  • Axtell, M. J., Chisholm, S. T., Dahlbeck, D., & Staskawicz, B. J. (2003). Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Molecular Microbiology, 49, 1537–1546.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, C., Betsuyaku, S., Peart, J., Takahashi, A., Noel, L., Sadanandom, A., et al. (2006). Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal, 25, 2007–2016.

    Article  PubMed  CAS  Google Scholar 

  • Bao, Q., Lu, W., Rabinowitz, J. D., & Shi, Y. (2007). Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Molecular Cell, 25, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane, A., Farnham, G., Moffett, P., & Baulcombe, D. C. (2002). Constitutive gain-of-function mutants in a nucleotide binding site- leucine rich repeat protein encoded at the Rx locus of potato. Plant Journal, 32, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Bieri, S., Mauch, S., Shen, Q. H., Peart, J., Devoto, A., Casais, C., et al. (2004). RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell, 16, 3480–3495.

    Article  PubMed  CAS  Google Scholar 

  • Birch, P. R., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: Oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith, T. M., Schiff, M., Caplan, J. L., Tsao, J., Czymmek, K., & Dinesh-Kumar, S. P. (2007). A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol, 5, e68.

    Article  PubMed  Google Scholar 

  • Catanzariti, A. M., Dodds, P. N., & Ellis, J. G. (2007). Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters, 269, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., et al. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 46, 794–804.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente van Bentem, S., Vossen, J. H., de Vries, K., van Wees, S. C., Tameling, W. I. L., Dekker, H., et al. (2005). Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant Journal, 43, 284–298.

    Article  PubMed  Google Scholar 

  • Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlothan, M., Boucher, C., et al. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100, 8024-8029

    Google Scholar 

  • Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K. A., Savino, C., et al. (2003). The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 100, 10124–10128.

    Article  PubMed  Google Scholar 

  • Dinesh-Kumar, S. P., Tham, W. H., & Baker, B. J. (2000). Structure-function analysis of the tobacco mosaic virus resistance gene N. Proceedings of the National Academy of Sciences of the United States of America, 97, 14789–14794.

    Article  PubMed  CAS  Google Scholar 

  • Doerner, P. (2003). Plant meristems: A merry-go-round of signals. Current Biology, 13, R368–R374.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J. G., Dodds, P. N., & Lawrence, G. J. (2007). Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annual Review of Phytopathology, 45, 289–306.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B. J., & Parker, J. E. (2000). Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 16, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Gabriëls, S. H. E. J., Takken, F. L. W., Vossen, J. H., de Jong, C. F., Liu, Q., Turk, S. C., et al. (2006). CDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions, 19, 567–576.

    Article  PubMed  Google Scholar 

  • Gabriëls, S. H. E. J., Vossen, J. H., Ekengren, S. K., van Ooijen, G., Abd-El-Haliem, A. M., van den Berg, G. C. M., et al. (2007). An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. The Plant Journal, 50, 14–28.

    Article  PubMed  Google Scholar 

  • Gorlich, D., & Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology, 15, 607–660.

    Article  PubMed  CAS  Google Scholar 

  • Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M., & Dangl, J. L. (2006). Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria. Annual Review of Microbiology, 60, 425–449.

    Article  PubMed  CAS  Google Scholar 

  • Holt 3rd, B. F., Belkhadir, Y., & Dangl, J. L. (2005). Antagonistic control of disease resistance protein stability in the plant immune system. Science, 309, 929–932.

    Article  PubMed  CAS  Google Scholar 

  • Holt 3rd, B. F., Boyes, D. C., Ellerstrom, M., Siefers, N., Wiig, A., Kauffman, S., et al. (2002). An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Developmental Cell, 2, 807–817.

    Article  PubMed  Google Scholar 

  • Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P., et al. (2005). Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Molecular Plant-Microbe Interactions, 18, 570–582.

    Article  PubMed  CAS  Google Scholar 

  • Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., et al. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO Journal, 22, 5679–5689.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C. F., Bhakta, A. V., Truesdell, G. M., Pudlo, W. M., & Williamson, V. M. (2000). Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 12, 1319–1329.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Joosten, M. H. A. J., & De Wit, P. J. G. M. (1999). The tomato-Cladosporium fulvum interaction: A versatile experimental system to study plant-pathogen interactions. Annual Review of Phytopathology, 37, 355–367.

    Article  Google Scholar 

  • Kajava, A. V. (1998). Structural diversity of leucine-rich repeat proteins. Journal of Molecular Biology, 277, 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. E., Du, F., Fang, M., & Wang, X. (2005). Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proceedings of the National Academy of Sciences of the United States of America, 102, 17545–17550.

    Article  PubMed  CAS  Google Scholar 

  • Kobe, B., & Deisenhofer, J. (1994). The leucine-rich repeat: A versatile binding motif. Trends in Biochemical Sciences, 19, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Leipe, D. D., Koonin, E. V., & Aravind, L. (2004). STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Journal of Molecular Biology, 343, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Leister, R. T., Dahlbeck, D., Day, B., Li, Y., Chesnokova, O., & Staskawicz, B. J. (2005). Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell, 17, 1268–1278.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., & Dinesh-Kumar, S. P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. Journal of Biological Chemistry, 279, 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Schiff, M., Serino, G., Deng, X. W., & Dinesh-Kumar, S. P. (2002). Role of SCF Ubiquitin-Ligase and the COP9 Signalosome in the N Gene- Mediated Resistance Response to Tobacco mosaic virus. Plant Cell, 14, 1483–1496.

    Article  PubMed  CAS  Google Scholar 

  • Mackey, D., Holt, B. F., Wiig, A., & Dangl, J. L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 108, 743–754.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54, 23–61.

    Article  PubMed  CAS  Google Scholar 

  • McHale, L., Tan, X., Koehl, P., & Michelmore, R. W. (2006). Plant NBS-LRR proteins: Adaptable guards. Genome Biology, 7, 212.

    Article  PubMed  Google Scholar 

  • Meier, I. (2007). Composition of the plant nuclear envelope: Theme and variations. Journal of Experimental Botany, 58, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Merkle, T. (2003). Nucleo-cytoplasmic partitioning of proteins in plants: Implications for the regulation of environmental and developmental signalling. Current Genetics, 44, 231–260.

    Article  PubMed  CAS  Google Scholar 

  • Mestre, P., & Baulcombe, D. C. (2006). Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell, 18, 491–501.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal, 20, 317–332.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809–834.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, P., Farnham, G., Peart, J., & Baulcombe, D. C. (2002). Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO Journal, 21, 4511–4519.

    Article  PubMed  CAS  Google Scholar 

  • Monosi, B., Wisser, R. J., Pennill, L., & Hulbert, S. H. (2004). Full-genome analysis of resistance gene homologues in rice. Theoretical & Applied Genetics, 109, 1434–1447.

    Article  CAS  Google Scholar 

  • Mucyn, T. S., Clemente, A., Andriotis, V. M. E., Balmuth, A. L., MucynOldroyd, G. E. D., Staskawicz, B. J., et al. (2006). The tomato NBARC-LRR protein Prf Interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell, 18 (10), 2792–806.

    Article  Google Scholar 

  • Nürnberger, T., & Kemmerling, B. (2006). Receptor protein kinases–pattern recognition receptors in plant immunity. Trends in Plant Scencei, 11, 519–522.

    Article  Google Scholar 

  • Palma, K., Zhang, Y., & Li, X. (2005). An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Current Biology, 15, 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50, 203–213.

    PubMed  CAS  Google Scholar 

  • Pay, A., Resch, K., Frohnmeyer, H., Fejes, E., Nagy, F., & Nick, P. (2002). Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant Journal, 30, 699–709.

    Article  PubMed  CAS  Google Scholar 

  • Peart, J. R., Mestre, P., Lu, R., Malcuit, I., & Baulcombe, D. C. (2005). NRG1, a CC-NB-LRR Protein, together with N, a TIR-NB-LRR Protein, Mediates Resistance against Tobacco Mosaic Virus. Current Biology, 15, 968–973.

    Article  PubMed  CAS  Google Scholar 

  • Rairdan, G. J., & Moffett, P. (2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell, 18, 2082–2093.

    Article  PubMed  CAS  Google Scholar 

  • Rairdan, G., & Moffett, P. (2007). Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes and Infection, 9, 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R., & Shi, Y. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 434, 926–933.

    Article  PubMed  CAS  Google Scholar 

  • Rivas, S., Mucyn, T., van den Burg, H. A., Vervoort, J., & Jones, J. D. G. (2002a). An approximately 400 kDa membrane-associated complex that contains one molecule of the resistance protein Cf-4. Plant Journal, 29, 783–796.

    Article  CAS  Google Scholar 

  • Rivas, S., Romeis, T., & Jones, J. D. G. (2002b). The Cf-9 disease resistance protein is present in an approximately 420- kilodalton heteromultimeric membrane-associated complex at one molecule per complex. Plant Cell, 14, 689–702.

    Article  CAS  Google Scholar 

  • Rivas, S., & Thomas, C. M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annual Review of Phytopathology, 43, 395–436.

    Article  PubMed  CAS  Google Scholar 

  • Ron, M., & Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16, 1604–1615.

    Article  PubMed  CAS  Google Scholar 

  • Rose, A., & Meier, I. (2001). A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proceedings of the National Academy of Sciences of the United States of America, 98, 15377–15382.

    Article  PubMed  CAS  Google Scholar 

  • Sacco, M., Mansoor, S., & Moffett, P. (2007). A RanGAP protein physically interacts with the NB-LRR protein Rx and is required for Rx-mediated viral resistance. Plant Journal, DOI 10.111/j.1365-313x.2007.03213.x.

  • Schmidt, S. A., Williams, S. J., Wang, C. I., Sornaraj, P., James, B., Kobe, B., et al. (2007). Purification of the M flax-rust resistance protein expressed in Pichia pastoris. Plant Journal, 50, 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  • Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J. E., & Innes, R. W. (2003). Cleavage of Arabidopsis. PBS1 by a bacterial type III effector. Science, 301, 1230–1233.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q. H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., et al. (2007). Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098–1103.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Cao, Y., & Wang, S. (2006). Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiology, 140, 998–1008.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., et al. (2004). Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae. in rice, encodes an LRR receptor kinase-like protein. Plant Journal, 37, 517–527.

    Google Scholar 

  • Sun, Q., Collins, N. C., Ayliffe, M., Smith, S. M., Drake, J., Pryor, T., et al. (2001). Recombination between paralogues at the rp1 rust resistance locus in maize. Genetics, 158, 423–438.

    PubMed  CAS  Google Scholar 

  • Takahashi, A., Casais, C., Ichimura, K., & Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 11777–11782.

    Article  PubMed  CAS  Google Scholar 

  • Takken, F. L. W., Albrecht, M., & Tameling, W. I. L. (2006). Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Tameling, W. I. L., & Baulcombe, D. C. (2007). Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell, 19, 1682–694.

    Article  PubMed  CAS  Google Scholar 

  • Tameling, W. I. L., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Takken, F. L. W., Haring, M. A., et al. (2002). The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell, 14, 2929–2939.

    Article  PubMed  CAS  Google Scholar 

  • Tameling, W. I. L., Vossen, J. H., Albrecht, M., Lengauer, T., Berden, J. A., Haring, M. A., et al. (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiology, 140, 1233–1245.

    Article  PubMed  CAS  Google Scholar 

  • Tan, X., Calderon-Villalobos, L. I., Sharon, M., Zheng, C., Robinson, C. V., Estelle, M., et al. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640–645.

    Article  PubMed  CAS  Google Scholar 

  • Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., et al. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 15, 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Ting, J. P., Kastner, D. L., & Hoffman, H. M. (2006). CATERPILLERs, pyrin and hereditary immunological disorders. Natures Review. Immunology, 6, 183–195.

    Article  CAS  Google Scholar 

  • Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, H., Yamaguchi, Y., & Sano, H. (2006). Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Molecular Biology, 61, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Ulker, B., & Somssich, I. E. (2004). WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491–498.

    Article  PubMed  Google Scholar 

  • van der Biezen, E. A., & Jones, J. D. G. (1998). The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8, R226–227.

    Article  PubMed  Google Scholar 

  • Van Der Hoorn, R. A., Rivas, S., Wulff, B. B., Jones, J. D., & Joosten, M. H. (2003). Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant Journal, 35, 305–315.

    Article  Google Scholar 

  • van Ooijen, G., van den Burg, H. A., Cornelissen, B. J. C., & Takken, F. L. W. (2007). Structure and function of Resistance proteins in solanaceous plants. Annual Review of Phytopathology, 45, 43–72.

    Article  PubMed  Google Scholar 

  • Weaver, M. L., Swiderski, M. R., Li, Y., & Jones, J. D. (2006). The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant Journal, 47, 829–840.

    Article  CAS  Google Scholar 

  • Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J. L., et al. (2000). Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 408, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Yan, N., Chai, J., Lee, E. S., Gu, L., Liu, Q., He, J., et al. (2005). Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature, 437, 831–837.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Dorey, S., Swiderski, M., & Jones, J. D. (2004). Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant Journal, 40, 213–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank L. W. Takken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 KNPV

About this chapter

Cite this chapter

Tameling, W.I.L., Takken, F.L.W. (2007). Resistance proteins: scouts of the plant innate immune system. In: Collinge, D.B., Munk, L., Cooke, B.M. (eds) Sustainable disease management in a European context. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8780-6_4

Download citation

Publish with us

Policies and ethics