On the Simulation of Textile Reinforced Concrete Layers by a Surface-Related Shell Formulation

  • Rainer Schlebusch
  • Bernd W. Zastrau
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 9)


The solution of structural analysis problems, especially of shell tructures, demands an efficient numerical solution strategy. Since unilateral contact problems are investigated, the shell model is formulated with respect to one of the outer surfaces, i.e., the shell formulation is surface-related. In particular, the investigation of textile reinforced strengthening layers will be carried out by this approach.

The presented shell formulation assumes linear shell kinematics with six displacement parameters. This low-order shell kinematics produces parasitical strains and stresses, leading to poor approximations of the solution or even useless results. Therewith, extensions and/or adjustments of well-known techniques to prevent or reduce locking like the assumed natural strain (ANS) method, proposed in [14], and the enhanced assumed strain (EAS) method, suggested in [13], have to be performed. The effectiveness of the surface-related solid-shell element is finally demonstrated by a numerical example.


surface-related shell formulation solid-shell element locking phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bathe KJ, Dvorkin EN (1985) Int. J. Num. Meth. Eng. 21:367–383MATHCrossRefGoogle Scholar
  2. 2.
    Betsch P, Stein E (1995) Comm. Num. Meth. Eng. 11:899–909MATHCrossRefGoogle Scholar
  3. 3.
    Braess D (1997) Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Bühter N, Ramm E (1992) 3d-extension of nonlinear shell equations based on the enhanced assumed strain concept. In: Hirsch C, Périaux J, Oñate E (eds.), Computational Methods in Applied Sciences. Elsevier, Brussels BelgiumGoogle Scholar
  5. 5.
    Curbach M (1998) Sachstandbericht zum Einsatz von Textilien im Massivbau. Beuth, BerlinGoogle Scholar
  6. 6.
    Dvorkin EN, Bathe KJ (1985) Eng. Comp. 1:77–88Google Scholar
  7. 7.
    Hughes TJR, Tezduyar T (1981) J. Appl. Mech. 48:587–596MATHCrossRefGoogle Scholar
  8. 8.
    Jesse F (2005) Tragverhalten von Filamentgarnen in zementgebundener Matrix. Ph.D. Thesis, TU Dresden, DresdenGoogle Scholar
  9. 9.
    MacNeal RH (1978) Comp. & Struct. 8:175–183MATHCrossRefGoogle Scholar
  10. 10.
    Schlebusch R (2005) Theorie und Numerik einer oberflächenorientierten Schalenformulierung. Ph.D. Thesis, TU Dresden, DresdenGoogle Scholar
  11. 11.
    Schlebusch R, Matheas J, Zastrau B (2003) J. Theor. Appl. Mech. 41(3):623–642Google Scholar
  12. 12.
    Schlebusch R, Zastrau B (2006) Theory and Numerics of a Surface-Related Shell Formulation. In Soares CAM, Martins JAC, Rodrigues HC, Ambrosio JAC, Pina CAB, Pereira EBR, Folgado J (eds.), III European Conference on Computational Mechanics. Springer, DordrechtGoogle Scholar
  13. 13.
    Simo JC, Rifai MS (1990) Int. J. Num. Meth. Eng. 29:1595–1638MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Simo JC, Hughes TJR (1986) J. Appl. Mech. 53:52–54MathSciNetGoogle Scholar
  15. 15.
    Washizu K (1981) Variational methods in elasticity and plasticity. Pergamon, FrankfurtGoogle Scholar
  16. 16.
    Zastrau B, Schlebusch R, Matheas J (2003) Special aspects of surface-related shell theories with applications to contact problems. In: Bathe KJ (ed), Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics. Elsevier, Amsterdam BostonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rainer Schlebusch
    • 1
  • Bernd W. Zastrau
    • 1
  1. 1.Technische Universität Dresden Faculty of Civil EngineeringInstitute of Mechanics and Shell StructuresD-01062 DresdenGermany

Personalised recommendations