Skip to main content

A Precis Of Two-Scale Approaches For Fracture In Porous Media

  • Chapter
Lecture Notes on Composite Materials

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 154))

A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fracture is independent from the underlying discretisation. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearisation is given for use within a Newton—Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terzaghi K. Theoretical Soil Mechanics. Wiley, New York, 1943

    Google Scholar 

  2. Biot MA. Mechanics of Incremental Deformations. Wiley, Chichester, 1965

    Google Scholar 

  3. Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Second Edition. Wiley, Chichester, 1998

    MATH  Google Scholar 

  4. Snijders H, Huyghe JM, Janssen JD. Triphasic finite element model for swelling porous media. International Journal for Numerical Methods in Fluids 1997; 20: 1039–1046

    Article  Google Scholar 

  5. Huyghe JM, Janssen JD. Quadriphasic mechanics of swelling incompressible media. International Journal of Engineering Science 1997; 35: 793–802

    Article  MATH  Google Scholar 

  6. Van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT. 3D FE implementation of an incompressible quadriphasic mixture model. International Journal for Numerical Methods in Engineering 2003; 57: 1243–1258

    Article  MATH  Google Scholar 

  7. Jouanna P, Abellan MA. Generalized approach to heterogeneous media. In Modern Issues in Non-Saturated Soils. Gens A, Jouanna P, Schrefler B (eds). Springer, Wien, New York, 1995; 1–128

    Google Scholar 

  8. de Borst R, Réthoré J, Abellan MA. A numerical approach for arbitrary cracks in a fluid-saturated medium. Archive of Applied Mechanics 2006; 75: 595–606

    Article  Google Scholar 

  9. Réthoré J, de Borst R, Abellan MA. A discrete model for the dynamic propagation of shear bands in a fluid-saturated medium. International Journal for Numerical and Analytical Methods in Geomechanics 2007; 31: 347–370

    Article  MATH  Google Scholar 

  10. Réthoré J, de Borst R, Abellan MA. A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering 2007; 71: 780–800

    Article  MathSciNet  Google Scholar 

  11. Réthoré de Borst R, Abellan MA. A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Computational Mechanics 2008; 42: 227–238

    Article  MATH  Google Scholar 

  12. Babuska I, Melenk JM. The partition of unity method. International Journal for Numerical Methods in Engineering 1997; 40: 727–758

    Article  MATH  MathSciNet  Google Scholar 

  13. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45: 601–620

    Article  MATH  MathSciNet  Google Scholar 

  14. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46: 131– 150

    Article  MATH  Google Scholar 

  15. Wells GN, Sluys LJ. Discontinuous analysis of softening solids under impact loading. International Journal for Numerical and Analytical Methods in Geomechanics 2001; 25: 691–709

    Article  MATH  Google Scholar 

  16. Wells GN, Sluys LJ, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. International Journal for Numerical Methods in Engineering 2002; 53: 1235–1256

    Article  Google Scholar 

  17. Wells GN, de Borst R, Sluys LJ. A consistent geometrically non-linear approach for delamination. International Journal for Numerical Methods in Engineering 2002; 54: 1333–1355

    Article  MATH  MathSciNet  Google Scholar 

  18. Remmers JJC, de Borst R, Needleman A. A cohesive segments method for the simulation of crack growth. Computational Mechanics 2003; 31: 69–77

    Article  MATH  Google Scholar 

  19. Samaniego E, Belytschko T. Continuum—discontinuum modelling of shear bands. International Journal for Numerical Methods in Engineering 2005; 62: 1857–1872

    Article  MATH  MathSciNet  Google Scholar 

  20. Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. International Journal for Numerical Methods in Engineering 2005; 63: 631–659

    Article  MATH  MathSciNet  Google Scholar 

  21. Réthoré J, Gravouil A, Combescure A. A combined space—time extended finite element method. International Journal for Numerical Methods in Engineering 2005; 64: 260–284

    Article  MATH  Google Scholar 

  22. Areias PMA, Belytschko T. Two-scale shear band evolution by local partition of unity. International Journal for Numerical Methods in Engineering 2006; 66: 878–910

    Article  MATH  MathSciNet  Google Scholar 

  23. de Borst R, Remmers JJC, Needleman A. Mesh-independent numerical representations of cohesive-zone models. Engineering Fracture Mechanics 2006; 173: 160–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. de Borst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Borst, R., Rethore, J., Abellan, MA. (2009). A Precis Of Two-Scale Approaches For Fracture In Porous Media. In: de Borst, R., Sadowski, T. (eds) Lecture Notes on Composite Materials. Solid Mechanics And Its Applications, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8772-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8772-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8771-4

  • Online ISBN: 978-1-4020-8772-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics