Arbuscular Mycorrhizae and Their Role in Plant Restoration in Native Ecosystems

  • Krish Jayachandran
  • Jack Fisher


There is high plant biodiversity in southern Florida, due to the floristic mixing of warm temperate Southeastern North America and tropical Caribbean. Arbuscular mycorrhizal (AM) fungi were found in the roots of native plants in the families Anacardiaceae, Arecaceae (Palmae), Cactaceae, Convolvulaceae, Cycadaceae, Euphorbiaceae, Fabaceae, Lauraceae, Rubiaceae, Simarubaceae and Smilacaeae that grow in the coastal maritime and inland hammocks of southern Florida. Seedlings of the following genera: Amorpha, Coccothrinax, Gymnanthes, Hamelia, Jacquemontia, Licaria, Nectandra, Opuntia, Picramnia, Psychotria, Rhus, Sabal, Serenoa and Zamia inoculated with AM fungi showed enhancement of growth and phosphorus uptake on local sandy, nutrient poor soils. Most native species were depend on AM fungi under natural conditions of poor or no soils, phosphorus limitations and often water stress. Restoration of endangered species of Amorpha (Fabaceae), Jacquemontia (Convolvulaceae), Opuntia (Cactaceae) and Pseudophoenix (Arecaceae) was considered using AM fungi. The symbiotic relationship between AM fungi and native plants is important in the low P ecosystem and also useful for restoration of native plants.


Arbuscular mycorrhizae native ecosystem endangered plants Everglades restoration phosphorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E. B., Rincón, E., Allen, M. F., Pérez-Jimenez, A., and Huante, P., 1998, Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30: 261-274.CrossRefGoogle Scholar
  2. Allen, M. F., 1991, The ecology of mycorrhizae. Cambridge University Press, Cambridge.Google Scholar
  3. Aziz, T., Sylvia, D. M., and Doren, R. F., 1995, Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecol. Appli. 5: 776-784.CrossRefGoogle Scholar
  4. Barredo-Pool, F., Varela, L., Arce-Montoya, M., and Orellana, R., 1998, Estudio de la asoci-ación micorrízica en dos Cactáceas natives del Estado de Yucatán, México. In R. Zulueta Rodríguez, M. A. Escalona Aguilar, and D. Trejo Aguilar [eds.], Avances de la investigación micorrízica en México, pp. 69-76. Universidad Veracruzana, Xalapa, Mexico.Google Scholar
  5. Bedini, S., Maremmani, A., and Giovannetti, M., 2000, Paris-type mycorrhizas in Smilax aspera L. growing in a Mediterranean sclerophyllous wood. Mycorrhiza 10: 9-13.CrossRefGoogle Scholar
  6. Blal, B., Morel, C., Gianinazzi-Pearson, V., Fardeau, J. C., and Gianinazzi, S., 1990, Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis Jacq.). Biol. Fert. Soils 9: 43-48.CrossRefGoogle Scholar
  7. Bray, R. H., and Kurtz, L. T., 1949, Determination of total, organic and available form of phosphorus in soil. Soil Sci. 59: 39-45.CrossRefGoogle Scholar
  8. Brundrett, M. C., and Abbott, L. K., 1991, Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Austr. J. Bot. 39: 445-457.CrossRefGoogle Scholar
  9. Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N., 1996, Working with mycorrhizas in forestry and agriculture. Austr. Centre Int. Agri. Res. Monogr. 32: 1-374.Google Scholar
  10. Caravaca, F., Barea, J. M., Palenzuela, J., Figueroa, D., Alguacil, M. M., and Roldán, A., 2003, Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil Ecol. 22: 103-111.CrossRefGoogle Scholar
  11. Carrillo-Garcia, A., León de la Luz, J.-L., Bashan, Y., and Bethlenfalvay, G. J., 1999, Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor. Ecol. 7: 321-335.Google Scholar
  12. Cavagnaro, T. R., Gao, L.-L., Smith, F. A., and Smith, S. E., 2001, Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol. 151: 469-475.CrossRefGoogle Scholar
  13. Cavagnaro, T. R., Smith, F. A., Ayling, S. M., and Smith, S. E., 2003, Growth and phos-phorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol. 157: 127-134.CrossRefGoogle Scholar
  14. Coile, N.C.,2000. Notes on Florida’s endangered and threatened plants. Florida Dept. of Agriculture and consumer services, 3rd edition. Botany section contribution No.38.Google Scholar
  15. Corkidi, L., and Rincón, E., 1997, Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. II Effects of arbuscular mycorrhizal fungi on the growth of species distributed in different early successional stages. Mycorrhiza 7: 17-23.CrossRefGoogle Scholar
  16. Drew, E. A., Murray, R. S., Smith, S. E., and Jakobsen, I., 2003, Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore size. Plant Soil 251: 105-114.CrossRefGoogle Scholar
  17. Fisher, J. B., and Jayachandran, K., 1999, Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217: 229-241.CrossRefGoogle Scholar
  18. Fisher, J. B., and Jayachandran, K., 2002, Arbuscular mycorrhizal fungi enhance seedling growth in two endangered plant species from south Florida. Intern. J. Plant Sci. 163: 559-566.CrossRefGoogle Scholar
  19. Fisher, J. B., and Vovides, A. P., 2004, Mycorrhizae are present in cycad roots. Bot. Rev. 70: 16-23.CrossRefGoogle Scholar
  20. Gemma, J. N., and Koske, R. E., 1997, Arbuscular mycorrhizae in sand dune plants of the North Atlantic coast of the U.S.: field and greenhouse inoculation and presence of mycorrhizae in planting stock. J. Environ. Manag. 50: 251-264.CrossRefGoogle Scholar
  21. Gemma, J. N., Koske, R. E., and Habte, H., 2002, Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Amer. J. Bot. 89: 337-345.CrossRefGoogle Scholar
  22. Graham, J. H., and Eissenstat, D. M., 1994, Host genotype and the formation and function of VA mycorrhizae. Plant Soil 159: 170-185.Google Scholar
  23. Hart, M. M., and Reader, R. J., 2002, Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 153: 335-344.CrossRefGoogle Scholar
  24. Henkel, T. W., Smith, W. K., and Christensen, M., 1989, Infectivity and effectivity of indigenous vesicular-arbuscular mycorrhizal fungi from contiguous soils in southwestern Wyoming. New Phytol. 112: 205-214.CrossRefGoogle Scholar
  25. Janos, D. P., Schroeder, M. S., Schaffer, B., and Crane, J. H., 2001, Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi chinensis Sonn. trees after propagation by air-layering. Plant Soil 233: 85-94.CrossRefGoogle Scholar
  26. Jayachandran, K., and Shetty, K. G., 2003, Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat. Bot. 76: 281-290.CrossRefGoogle Scholar
  27. Koske, R. E., and Gemma, J. N., 1995, Vesicular-arbuscular mycorrhizal inoculation of Hawaiian plants: a conservation technique for endangered tropical species. Pacific Sci. 49: 181-191.Google Scholar
  28. Kyllo, D. A., Velez, V., and Tyree, M. T., 2003, Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160: 443-454.CrossRefGoogle Scholar
  29. Maremmani, A., Bedini, S., Matoševic, I., Tomai, P. E., and Giovannetti, M., 2003, Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13: 33-40.PubMedGoogle Scholar
  30. Meador, R. E., 1977, The role of mycorrhizae in influencing succession on abandoned Everglades farmland. MS thesis, University of Florida, Gainesville, FL, 98 pp.Google Scholar
  31. Morte, A., and Honrubia, M., 2002, Growth response of Phoenix canariensis to inoculation with arbuscular mycorrhizal fungi. Palms 46: 76-80.Google Scholar
  32. Olsen, S. R., and Summers, L. E., 1982, Phosphorus. In A. L. Page, R. H. Miller, and D. R. Keeney [eds.] Methods of soil analysis, part 2 - chemical and microbiological properties, agronomy No 9 Part 2. American Society of Agronomy, Soil Science Society America, Madison, WI.Google Scholar
  33. Olsson, P. A., Jakobsen, I., and Wallander, H., 2002, Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In M. G. A. van der Heijden and I Sanders [eds.] Mycorrhizal ecology, pp. 93-115. Springer, Berlin.Google Scholar
  34. Pendleton, R. L., and Pendleton, B. K., 2003, Soil microorganisms affect survival and growth of shrubs grown in competition with cheatgrass (New Mexico). Ecol. Restor. 21: 215-216.Google Scholar
  35. Pendleton, R. L., Pendleton, B. K., Howard, G. L., and Warren, S. D., 2004, Response of Lewis flax seedlings to inoculation with arbuscular mycorrhizal fungi and cyanobacteria. In A. L. Hild, N. L. Shaw, E. E. Meyer, D. T. Booth, and E. D. McArthur [comps.] Seed and soil dynamics in shrubland ecosystems, Proceedings RMRS-P-31, pp. 64-68. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico.Google Scholar
  36. Pimienta-Barrios, E., Pimienta-Barrios, En., Salas-Galván, M. E., Zañudo-Hernandez, J., and Nobel, P. S., 2002, Growth and reproductive characteristics of the columnar cactus Stenocereus queretaroensis and their relationships with environmental factors and colonization by arbuscular mycorrhizae. Tree Physiol. 22: 667-674.PubMedGoogle Scholar
  37. Pimienta-Barrios, E., Gonzalez del Castillo-Aranda, M. E., Muñoz-Urias, A., and Nobel, P. S., 2003, Effects of Benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild platyopuntia in a rocky semi-arid environment. Ann. Bot. 92: 239-245.Google Scholar
  38. Ravolanirina, F., Blal, B., Gianinazzi, S., and Gianinazzi-Pearson, V., 1989, Mise au point d’une méthode rapide d’endomycorhization de vitroplants. Fruits 44: 165-170.Google Scholar
  39. Requena, N., Perez-Solis, E., Azcón-Aguilar, C., Jeffries, P., and Barea, J., 2001, Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 67: 495-498.CrossRefPubMedGoogle Scholar
  40. Richter, B. S., and Stutz, J. C., 2002, Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor. Ecol. 10: 607-616.CrossRefGoogle Scholar
  41. Rincón, E., Huante, P., and Ramírez, Y., 1993, Influence of vesicular-arbuscular mycorrhizae on biomass production by the cactus Pachycereus pectin-aboriginum. Mycorrhiza 3: 79-81.CrossRefGoogle Scholar
  42. Salyards, J. R., Evans, R. Y., and Berry, A. M., 2003, Mycorrhizal development and plant growth in inoculated and non-inoculated plots of California native grasses and shrubs. Native Plants (Fall 2003): 143-149.Google Scholar
  43. Sanders, I. R., 2002, Specificity in the arbuscular mycorrhizal symbiosis. In M. G. A. van der Heijden and I. Sanders [eds.] Mycorrhizal ecology, pp. 415-437. Springer, Berlin.Google Scholar
  44. Schultz, P. A., Miller, R. M., Jastrow, J. D., Rivetta, C. V., and Bever, J. D., 2001, Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high-and low-nutrient parairies. Amer. J. Bot. 88: 1650-1656.CrossRefGoogle Scholar
  45. Sengupta, A., and Chaudhuri, S., 2002, Arbuscular mycorrhizal relationships of mangrove plant community at the Ganges River estuary in India. Mycorrhiza 12: 169-174.PubMedGoogle Scholar
  46. Smith, F. A., and Smith, S. E., 1997, Tansley Review No. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 137: 373-388.CrossRefGoogle Scholar
  47. Smith, S. E., and Read, D. J., 1997, Mycorrhizal symbiosis. Second Edition. Academic, San Diego, CA.Google Scholar
  48. Smith, M. R., Charvat, I., and Jacobson, R. L., 1998, Arbuscular mycorrhizae promote establishment of prairie species in a tall grass prairie restoration. Can. J. Bot. 76: 1947-1954.CrossRefGoogle Scholar
  49. Sylvia, D. M., 1989, Nursery inoculation of sea oats with vesicular-arbuscular mycorrhizal fungi and out-planting performance on Florida beaches. J. Coastal Res. 5: 747-754.Google Scholar
  50. Sylvia, D. M., Jarstfer, A. G., and Vostátka, M., 1993, Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol. Fert. Soils 16: 139-144.CrossRefGoogle Scholar
  51. Sylvia, D. M., Alagely, A. K., Kane, M. E., and Philman, N. L., 2003, Compatible host -mycorrhizal fungus combinations for micropropagated sea oats. Mycorrhiza 13: 177-183.CrossRefPubMedGoogle Scholar
  52. Szulczewski, M. D., Li, Y., Zhou, M., and Savabi, M. R., 2008, Phosphorus fractions in cal-careous from soils the southern Everglades and nearby farmlands. Soil Sci. Soci. J. (in press). U.S. Fish and Wildlife Service, 1999, South Florida multi-species recovery plan. Southeast Region, U.S. Fish and Wildlife Service. Atlanta, GA.Google Scholar
  53. Vaast, P., Zasoski, R. J., and Bledsoe, C. S., 1996, Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6: 493-497.CrossRefGoogle Scholar
  54. Vidal, M. T., Azcon-Aguilar, C., Barea, J. M., and Pliegoalfaro, F., 1992, Mycorrhizal inocul-ation enhances growth and development of micropropagated plants of avocado. Hort. Sci. 1: 25-30.Google Scholar
  55. Wubet, T., Kottke, I., Teketay, D., and Oberwinkler, F., 2003, Mycorrhizal status of indige-nous trees in dry Afromontane forests of Ethiopia. For. Ecol. Manag. 179: 387-399.CrossRefGoogle Scholar
  56. Wunderlin, R. P., and Hansen, B. F., 2000, Flora of Florida. Vol. 1. University Press of Florida, Gainesville, FL.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Krish Jayachandran
    • 1
  • Jack Fisher
    • 2
  1. 1.Environmental Studies Department and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Fairchild Tropical Botanical GardenCoral GablesUSA

Personalised recommendations