Advertisement

Ectomycorrhizae and Their Importance in Forest Ecosystems

  • Kazuyoshi Futai
  • Takeshi Taniguchi
  • Ryota Kataoka

Abstract

Ectomycorrhizal (ECM) associations involve the most diverse category of myocrrhizae. The diversity derives from the fungal partners; more than 5,000 species of fungi, mainly Basidiomycetes, with a limited number of Ascomycetes and Zygomycetes, make the relationship very diverse. On the contrary, however, relatively few families of plants such as Fagaceae, Pinaceae, Betulaceae, and Dipterocarpaceae are involved in the ECM associations. These plants, however, are distributed over wide areas of temperate and boreal forests, and are therefore economically important. ECM fungi make associations with plants by forming a sheath (mantle) around fine root tips with hyphae that grow inward between root cells of the cortex and make Hartig net, and emanate outward through the soil, increasing the surface area to absorb nutrients and water. Thus, the mycorrhizal fungi gain photosynthates and other essential substances from the plant and in return help the plant take up water and minerals. Pine wilt disease (PWD) is a globally serious forest disease, and also shows the importance of ectomycorrhizal relationships. Pine trees planted on a mountain slope were killed by PWD, but some trees survived at the top of the slope, where mycorrhizal associations developed far better than on lower slopes. ECM associations, beside fertilization, also increase the supply of water to the pines, and elevate host resistance against disease and parasites. Moreover, inoculation of pine seedlings with ECM fungi under laboratory conditions confirmed the increase in their resistance to PWD. Pine seedlings can tolerate the adverse effects of environmental stress such as acid mist when infected with ECM fungi. These fungi can also make a significant contribution to forest ecosystems by increasing biomass and creating a network among trees through which nutrients may transported. ECM fungi also improve the growth of host plants at the seedling stage. Many pioneer plants in wastelands are facilitated in their establishment by ECM. This association has been successfully applied to reforestation programs in tropical forests by inoculating mycorrhizae on to nursery seedlings.

Keywords

Basidiomycetes forest ecosystem networks succession 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., Nadelhoffer, K.J., Steudler, P., and Melillo, J.M., 1989, Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386.CrossRefGoogle Scholar
  2. Abuzinadah, R.A., and Read, D.J., 1986, The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol. 103: 481-493.CrossRefGoogle Scholar
  3. Adriaensen K., Daniël van der Lelie, Laere, A.V., Vangronsveld, J., and Colpaert, J.V., 2003, A zinc-adapted fungus protects pines from zinc stress. New Phytol. 161: 549-555.CrossRefGoogle Scholar
  4. Ahonen-Jonnarth, U., and Finlay, R.D., 2001, Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 129-138.CrossRefGoogle Scholar
  5. Ahonen-Jonnarth, U., vanhees, P.A.K., Lundstrom, U.S., and Finlay, R.D., 2000, Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol. 146: 557-567.CrossRefGoogle Scholar
  6. Akema, T., and Futai, K., 2005, Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J. For. Res. 10: 93-99.CrossRefGoogle Scholar
  7. Akiyama, K., Matsuzaki, K., and Hayashi, H., 2005, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827.PubMedCrossRefGoogle Scholar
  8. Allen, E., Chambers, J.E., Connor, K.F., Allen, M.F., and Brown, R.W., 1987, Natural re-establishment of mycorrhizae in disturbed alpine ecosystems. Arct. Apl. Res. 19: 11-20.CrossRefGoogle Scholar
  9. Allen, M.F., 1988, Re-establishment of VA-mycorrhizas following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc. R. Soc. Edinburgh 94B: 63-71.Google Scholar
  10. Allen, M.F., 1991, The Ecology of Mycorrhizae. New York, Cambridge University Press.Google Scholar
  11. Andersson, S., Jensen, P., and Soderstrom B., 1996, Effects of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat. New Phytol. 133: 695-704.CrossRefGoogle Scholar
  12. Arnebrant, K., Ek H., Finlay, R.D., and Söderstrom, B., 1993, Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124: 231-242.CrossRefGoogle Scholar
  13. Auþina, A., Rudawska, M., Leski, T., Skridaila, A., Edvardas Riepšas, E., and Michal Iwanski, M., 2007, Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Appl. Environ. Microbiol. 73: 4867-4873.CrossRefGoogle Scholar
  14. Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., and Vivanco, J.M., 2002, Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/-)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128: 1173-1179.PubMedCrossRefGoogle Scholar
  15. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M., 2006, The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 57: 233-266.Google Scholar
  16. Baxter, J.W., and Dighton, J., 2001, Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol. 152: 139-149.CrossRefGoogle Scholar
  17. Baxter, J.W., and Dighton, J., 2005, Diversity-functioning relationships in ectomycorrhizal fungal communities. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 383-398.Google Scholar
  18. Becker, D.M., Bagley, S.T., and Podila, G.K., 1999, Effects of mycorrhiza-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91: 33-40.CrossRefGoogle Scholar
  19. Begon, M., Harper, J.L., and Townsend, C.R., 1996, Ecology: Individuals, Populations and Communities. 3rd edit. Oxford, Blackwell Science.Google Scholar
  20. Bending, G.D., and Read, D.J., 1997, Lignin and soluble phenolic degradation by ecto-mycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101: 1348-1354.CrossRefGoogle Scholar
  21. Bending, G.D., Poole, E.J., Whipps, J.M., and Read D.J., 2002, Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol. Ecol. 39: 219-227.PubMedGoogle Scholar
  22. Bills, G.F., Holtzman, G.I., and Miller, O.K., 1986, Comparison of ectomycorrhizal basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can. J. Bot. 64: 760-768.CrossRefGoogle Scholar
  23. Bingyun, W., and Nioh, I., 1997, Growth and water relations of P. tabulaeformis seedlings inoculated with ectomycorrhizal fungi. Microbes Environ. 12: 69-74.Google Scholar
  24. Bledsoe, C.S., Tennyson, K., and Lopushinsky, W., 1982, Survival and growth of ourplanted Douglas-fir seedkings inoculated with mycorrhizal fungi. Can. J. For. Res. 12: 720-723.CrossRefGoogle Scholar
  25. Bogeat-Triboulot, M.B., Bartoli, F., Garbaye, J., Marmeisse, R., and Tagu, D., 2004, Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267: 213-223.CrossRefGoogle Scholar
  26. Bougher, N.L., Grove, T.S., and Malajczuk, N., 1990, Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol. 114: 77-85.CrossRefGoogle Scholar
  27. Boyle, C.D., and Hellenbrand, K.E., 1991, Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can. J. Bot. 69: 1764-1771.CrossRefGoogle Scholar
  28. Branzanti, M.B., Rocca, E., and Pisi, A., 1999, Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9: 103-109.Google Scholar
  29. Braun-Lullemann, A., Huttermann, A., and Majcherczyk, A., 1999, Screening of ecto-mycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 53: 127-132.CrossRefGoogle Scholar
  30. Brown, M.T., and Wilkins, D.A., 1985, Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101-106.CrossRefGoogle Scholar
  31. Bruns, T.D., 1995, Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63-73.CrossRefGoogle Scholar
  32. Bucking, H., and Heyser, W., 1994, The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203-212.CrossRefGoogle Scholar
  33. Burgess, T.I., Malajczuk1, N., and Grove, T.S., 1993, The ability of 16 ectomycorrhizai fungi to increase growth and phosphorus uptake of Eucalyptus globulus LabiU. and E. diversicolor F. Muell. Plant Soil 153: 155-164.CrossRefGoogle Scholar
  34. Cairney, J.W.G., 1999, Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9: 125-135.CrossRefGoogle Scholar
  35. Cairney, J.W.G., and Chambers, S.M., 1997, Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7: 117-131.CrossRefGoogle Scholar
  36. Caravaca, F., Alguacil, M.M., Azcón, R., Parladé, J., Torres, P., and Roldán1, A., 2005, Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus niger. Microb. Ecol. 49: 73-82.PubMedCrossRefGoogle Scholar
  37. Castellano, M.A., and Trappe, J.M., 1991, Pisolithus tinctorius fails to improve plantation performance of inoculated conifers in southwestern Oregon. New For. 5: 349-358.Google Scholar
  38. Chakravarty, C., Peterson, R.L., and Ellis, B.E., 1991, Interaction between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. J. Phytopathol. 132: 207-218.CrossRefGoogle Scholar
  39. Chakravarty, P., and Unestam, T., 1987a, Mycorrhizal fungi prevent disease in stressed pine seedlings. J. Phytopathol. 118: 335-340.CrossRefGoogle Scholar
  40. Chakravarty, P., and Unestam, T., 1987b, Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings. J. Phytopathol. 120: 104-120.CrossRefGoogle Scholar
  41. Chakravarty, P., Khasa, D., Dancik, B., Sigler, L., Wichlacz, M., Trifonov, L.S., and Ayer, W.A., 1999, Integrated control of Fusarium damping-off in conifer seedlings. J. Plant Dis. Prot. 106: 342-352.Google Scholar
  42. Chalot, M., and Brun, A., 1998, Physiology of organic nitrogen acquisition by ecto-mycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22: 21-44.PubMedCrossRefGoogle Scholar
  43. Chalot, M., Kytöviitam, M., Brun, A., Finlay, R.D., and Söderström, B., 1995, Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 99: 1131-1138.CrossRefGoogle Scholar
  44. Chilvers, G.A., Douglass, P.A., and Lapeyrie, F.F., 1986, A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol. 103: 597-402.CrossRefGoogle Scholar
  45. Clements, F.E., 1916, Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute, Washington, DC.Google Scholar
  46. Coleman, M.D., and Bledsoe, C.S., 1989, Pure culture response of ectomycorrhizal fungi to imposed water stress. Can. J. Bot. 67: 29-39.CrossRefGoogle Scholar
  47. Coleman, M.D., Bledsoe, C.S., and Smit, B.A., 1990, Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol. 115: 275-284.CrossRefGoogle Scholar
  48. Colpaert, J.V., and Van assche, J.A., 1992, Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201-211.CrossRefGoogle Scholar
  49. Colpaert, J.V., Van Tichelen, K.K., Van Assche, J.A., and Van Laere, A., 1999, Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol. 143: 589-597.CrossRefGoogle Scholar
  50. Connell, J.H., and Slatyer, R.O., 1977, Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119-1144.CrossRefGoogle Scholar
  51. Cullings, K.W., Vogler, D.R., Parker, V.T., and Finley, S.K., 2000, Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl. Environ. Microbiol. 66: 4988-4991.PubMedCrossRefGoogle Scholar
  52. Cumming, J., 1996, Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Tree Physiol. 16: 977-983.PubMedGoogle Scholar
  53. Dighton, J., and Jansen, A.E., 1991, Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ. Pollut. 73: 179-204.PubMedCrossRefGoogle Scholar
  54. Dittmann, J., Heyser, W., and Bucking, H., 2002, Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings. Chemosphere 49: 297-306.PubMedCrossRefGoogle Scholar
  55. Dixon, R.K., Pallardy, S.G., Garrett, H.E., Cox, G.S., and Sander, I.L., 1983, Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmycorrhizal Quercus velutina seedlings. Can. J. Bot. 61: 1559-1565.Google Scholar
  56. Donnelly, P.K., Hedge, R.S., and Fletcher, J.S., 1994, Growth of PCB degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981-988.CrossRefGoogle Scholar
  57. Dosskey, M.G., Boersma, L., and Linderman, R.G., 1991, Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol. 117: 327-334.CrossRefGoogle Scholar
  58. Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988a, Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 108: 471-476.CrossRefGoogle Scholar
  59. Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988b, Interaction between the ecto-mycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can. J. Bot. 66: 558-562.Google Scholar
  60. Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1989, The time course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 111: 693-698.CrossRefGoogle Scholar
  61. Duponnois, R., and Garbaye, J., 1991, Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis effects in aseptic and in glasshouse conditions. Ann. Sci. For. 48: 239-251.CrossRefGoogle Scholar
  62. Duponnois, R., Founoune, H., Masse, D., and Pontanier, R., 2005, Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For. Ecol. Manage. 207: 351-362.CrossRefGoogle Scholar
  63. Ek, H., Sjögren, M., Arnebrant, K., and Söderström, B., 1994, Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl. Soil Ecol. 1: 155-169.CrossRefGoogle Scholar
  64. Eltrop, L., and Marschner, H., 1996, Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. New Phytol. 133: 469-478.CrossRefGoogle Scholar
  65. Farquhar, M.L., and Peterson, R.L., 1991, Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillus involutus. Can. J. Bot. 69: 1372-1383.CrossRefGoogle Scholar
  66. Finlay, R., and Söderström, B., 1992, Mycorrhiza and carbon flow to the soil. In: Allen M.F., ed. Mycorrhizal Functioning. New York, Chapmaan & Hall, 134-160.Google Scholar
  67. Finlay, R.D., and Read, D.J., 1986a, The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of carbon-14 labeled carbon between plants inter-connected by a common mycelium. New Phytol. 103: 143-156.CrossRefGoogle Scholar
  68. Finlay, R.D., and Read, D.J., 1986b, The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 103: 157-166.CrossRefGoogle Scholar
  69. Finlay, R.D., Ek, H., Ooham, G., and Söderström, B, 1988, Myeelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus syivestris plants infected with four difTerent ectomycorrhizal fungi. New Phytol. 110: 59-66.CrossRefGoogle Scholar
  70. Flores, H.E., Vivanco, J.M., and Loyola-Vargas, V.M., 1999, Radicle biochemistry: the biology of root-specific metabolism. Tren. Plant Sci. 4: 220-226.CrossRefGoogle Scholar
  71. Fogel, R., 1980, Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol. 86: 199-212.CrossRefGoogle Scholar
  72. Fogel, R., and Hunt, G., 1979, Fungal and arboreal biomass in western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can. J. For. Res. 9: 245-256.CrossRefGoogle Scholar
  73. Fomina, M., Charnock, J.M., Hillier, S., Alexander, I.J., and Gadd, G.M., 2006, Zinc phos-phate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb. Ecol. 52:322-333.PubMedCrossRefGoogle Scholar
  74. Frey-Klett, P., Chavatte, M., Clausse, M.-L., Courrier, S., Roux, C.L., Raaijmakers, J., Martinotti, G. M., Pierrat, J.-C., and Garbaye, J., 2005, Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol. 165: 317-328.PubMedCrossRefGoogle Scholar
  75. Galli, U., Meier, M., and Brunold, C., 1993, Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L,) Karst,] and its ectomycorrhizal fungus Laccaria laccata (Seop, ex Fr,) Bk, & Br.: Sulphate reduction, thiols and distribution of the heavy metal. New Phytol. 125: 837-843.CrossRefGoogle Scholar
  76. Galli, U., Schuepp, H., and Brunold, C., 1994, Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.CrossRefGoogle Scholar
  77. Geßler, A., Jung, K., Gasche, R., Papen, H., Heidenfelder, A., Borner, E., Metzler, B., Augustin, S., Hildebr, E., and Rennenberg, H., 2005, Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur. J. For. Res. 124: 95-111.Google Scholar
  78. Genney, D.R., Alexander, I.J., Killham, K., and Meharg, A.A., 2004, Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorine is retarded in a Scots pine ectomycor-rhizosphere. New Phytol. 163: 641-649.CrossRefGoogle Scholar
  79. Gill, R.A., and Jackson, R.B., 2000, Global patterns of root turnover for terrestrial eco-systems. New Phytol. 147: 13-31.CrossRefGoogle Scholar
  80. Godbold, D.L., Jentschke, G., and Marschner, P., 1998, Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36: 757-762.CrossRefGoogle Scholar
  81. Golley, F.B., 1965, Structure and function of an old-field broomsedge community. Ecol. Monogr. 35: 113-137.CrossRefGoogle Scholar
  82. Gomes, E.A., de Barros, E.G., Kasuya, M.C.M., and Araújo, E.F., 2004, Molecular charac-terization of Pisolithus spp. isolates by rDNA PCR-RFLP. Mycorrhiza 8: 197-202.CrossRefGoogle Scholar
  83. Grayston, S.J., Wang, S., Campbell, C.D., and Edwards, A.C., 1998, Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369-378.Google Scholar
  84. Grenon, F., Bradley, R.L., Jones, M.D., Shipley, B., and Peat, H., 2004, Soil factors controlling mineral N uptake by Picea engelmannii seedlings: the importance of gross NH4+ production rates. New Phytol. 165: 791-800.CrossRefGoogle Scholar
  85. Guenoune, D., Galili, S., Phillips, D.A., Volpin, H., Chet, I., Okon, Y., and Kapulnik, Y., 2001, The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci. 160: 925-932.PubMedCrossRefGoogle Scholar
  86. Guillon, C., St-Arnaud, M., Hamel, C., and Jabaji-Hare, S.H., 2002, Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can. J. Bot. 80: 305-315.CrossRefGoogle Scholar
  87. Harley, J.L., and McCready, C.C., 1952, The uptake of phosphatase by excised mycorrhizal roots of the beech. III. The effect of the fungal sheath on the availability of phosphate to the core. New Phytol. 51: 342-348.CrossRefGoogle Scholar
  88. Harrison, A.F., Stevens, P.A., Dighton, J., Quarmby, C., Dickinson, A.L., Jones, H.E., and Howard, D.M., 1995, The critical load of nitrogen for Sitka spruce forests on stagnopodsols in Wales: Role of nutrient limitations. For. Ecol. Manag. 76: 139-148.CrossRefGoogle Scholar
  89. Hartley-Whitaker, J., Cairney, J.W.G., and Meharg, A.A., 2000, Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218: 31-42.CrossRefGoogle Scholar
  90. He, X.H., Critchley, C., Ng, H., and Bledsoe, C.S. 2004, Reciprocal N (15NH4 + or 15NO3 í) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163: 629-640.CrossRefGoogle Scholar
  91. Hentschel, E., Jentschke, G., Marschner, P., Schlegel, H., and Godbold, D.L., 1993, The effect of Pxillus involutus on the aluminium sensitivity of Norway spruce seedlings. Tree Physiol. 12: 379-390.PubMedGoogle Scholar
  92. Heslin, M.C., and Douglas, G.C., 1986, Effects of ectomycorrhizal fungi on growth and development of poplar derived from tissue culture. Sci. Horti. 30: 143-149.CrossRefGoogle Scholar
  93. Hobbie, E.A., 2006, Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 653-569.Google Scholar
  94. Högberg, H., 1989, Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. For. Ecol. Manag. 28: 7-17.CrossRefGoogle Scholar
  95. Horan, D.P., and Chilvers, G.A., 1990, Chemotropism- the key to ectomycorrhizal formation? New Phytol. 116: 297-301.CrossRefGoogle Scholar
  96. Horton, T.R., and Bruns, T.D., 1998, Multiple host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and bishop pine (Pinus muricata D. Don). New Phytol. 139: 331-339.CrossRefGoogle Scholar
  97. Horton, T.R., Bruns, T.D., and Parker, V.T., 1999, Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77: 93-102.CrossRefGoogle Scholar
  98. Hung, L.L., and Trappe, J.M., 1983, Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75: 234-241.CrossRefGoogle Scholar
  99. Hwang, S.F., Chakravarty, P., and Chang, K.F., 1995, The effect of two ectomycorrhizal fungi, Paxillus involutus and Suillus tomentosus, and of Bacillus subtilis on Fusarium damping-off in jack pine seedlings. Phytoprotection 76: 57-66.Google Scholar
  100. Jentschke, G., Godbold, D.L., and Huttermann, A., 1991a, Culture of mycorrhizal tree seedlings under controlled conditions: effects of nitrogen and aluminium. Physiol. Plant. 81: 408-416.CrossRefGoogle Scholar
  101. Jentschke, G., Schlegel, H., and Godbold, D.L., 1991b, The effect of aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol. Plant. 82: 266-270.CrossRefGoogle Scholar
  102. Johnson, N.C., Graham, J.H., and Smith, F.A., 1997, Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575-585.CrossRefGoogle Scholar
  103. Joner, E.J., Leyval, C., and Colpaert, J.V., 2006, Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ. Poll. 142: 34-38.CrossRefGoogle Scholar
  104. Jones, M.D., and Hutchinson, T.C., 1986, The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442.CrossRefGoogle Scholar
  105. Jones, M.D., Durall, D.M., and Tinker, P.B., 1991, Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol. 119: 99-106.CrossRefGoogle Scholar
  106. Jonsson, L., 1998, Community structure of ectomycorrhizal fungi in Swedish boreal forests, Ph.D. Thesis, Swedish University of Agricultural Sciences.Google Scholar
  107. Jonsson, L., Dahlberg, A., Nilsson, M.C., Kårén, O., and Zackrisson, O., 1999, Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol. 142: 151-162.CrossRefGoogle Scholar
  108. Jonsson, L.M., Nilsson, M., Wardle, D.A., and Zackrisson, O., 2001, Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353-364.CrossRefGoogle Scholar
  109. Jumpponen, A., and Egerton-Warburton, L.M., 2005, Mycorrhizal fungi in successional environments: A community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 139-168.Google Scholar
  110. Kårén, O., and Nylund, J.-E., 1996, Effects of N-free fertilization on ectomycorrhiza community structure in Norway spruce stands in Southern Sweden. Plant Soil 181: 295-305.CrossRefGoogle Scholar
  111. Kårén, O., and Nylund, J.-E., 1997, Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can. J. Bot. 75: 1628-1642.CrossRefGoogle Scholar
  112. Kennedy, P.G., and Peay, K.G., 2007, Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291: 155-165.CrossRefGoogle Scholar
  113. Kennedy, P.G., Izzo, A.D., and Bruns, T.D., 2003, There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91: 1071-1080.CrossRefGoogle Scholar
  114. Kikuchi, J., Tsuno, N., and Futai, K., 1991, The effect of mycorrhizae as a resistance factor of pine trees to the pine wood nematode. J. Jpn. For. Soc. 73: 216-218.Google Scholar
  115. Koide, R.T., 1991, Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365-386.CrossRefGoogle Scholar
  116. Koide, R.T., Courty, P.E., and Garbaye, J., 2007, Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytol. 174: 240-243.PubMedCrossRefGoogle Scholar
  117. Krupa, S., and Fries, N., 1971, Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Can. J. Bot. 49: 1425-1431.CrossRefGoogle Scholar
  118. Lamhamedi, M.S., Fortin, J.A., Kope, H. H., and Kropp, B. R., 1990, Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol. 115: 689-697.CrossRefGoogle Scholar
  119. Lamhamedi, M.S., Bernier, P.Y., and Fortin, J.A., 1992, Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol. 10: 153-167.PubMedGoogle Scholar
  120. Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., and van Breemen, N., 2001, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Tren. Ecol. Evol. 16: 248-254.CrossRefGoogle Scholar
  121. Le Tacon, F., Garbaye, J., and Carr, G., 1987, The use of mycorrhizas in temperate and tropical forests. Symbiosis 3: 179-206.Google Scholar
  122. Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D., 2004, Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82: 1016-1045.CrossRefGoogle Scholar
  123. Lewis, J.D., Licitra, J., Tuininga, A.R., Sirulnik, A., Turner, G.D., and Johnson, J., 2004, Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Tree Physiol. 28: 629-636.Google Scholar
  124. Lilja, A., Lija, S., Kukela, T., and Rikala, R. 1997, Nursery practices and management of fungal diseases in forest nurseries in Finland. A Rev. Silva Fennica 31: 79-100.Google Scholar
  125. Maehara, N., Kikuchi, J., and Futai K., 1993, Mycorrhizae of Japanese black pine (Pinus thunbergii): protection of seedlings from acid mist and effect of acid mist on mycorrhiza formation. Can. J. Bot. 71: 1562-1567.CrossRefGoogle Scholar
  126. Mahmood, S., Finlay, R.D., Fransson, A.-M., and Wallander, H., 2003, Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiol. Ecol. 43: 121-131.PubMedCrossRefGoogle Scholar
  127. Maier A., Riedlinger J., Fiedler H.P., and Hampp R., 2004, Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol. Prog. 3: 129-136.CrossRefGoogle Scholar
  128. Marschner, H., and Dell, B., 1994, Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159: 89-102.Google Scholar
  129. Martin, F., Ramstedt, M., and Soederhaell, K., 1987, Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie 69: 569-581.PubMedCrossRefGoogle Scholar
  130. Marx, D.H., 1969, The influence of ectotrophic ectomycorrhizal fungi on the resistance to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.Google Scholar
  131. Marx, D.H., Ruehle, J.L., Kenney, D.S., Cordell, C.E., Riffle, J.W., Molina, R.J., Pawuk, W. H., Navratil, S., Tinus, R.W., Goodwin, O.C., 1982, Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of Ectomycorrhizae on container-grown tree seedlings. For. Sci. 28: 373-400.Google Scholar
  132. Matsuda, Y., and Hijii, N., 2004, Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can. J. Bot. 82: 822-829.CrossRefGoogle Scholar
  133. McAfee, B.J., and Fortin, J.A., 1986, Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can. J. Bot. 64: 848-852.CrossRefGoogle Scholar
  134. Meharg, A.A., and Cairney, W.G., 2000, Ectomycorrhizas-extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32: 1475-1484.Google Scholar
  135. Meharg, A.A., Cairney, W.G., and Maguire, N., 1997, Mineralization of 2,4-Dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34: 2495-2504.CrossRefGoogle Scholar
  136. Melin, E., 1963, Some effects of forest tree roots on mycorrhizal Basidiomycetes. In: Mosse, B., and Nutman, P.S., eds. Symbiotic Associations. Cambridge, Cambridge University Press, 124-145.Google Scholar
  137. Mexal, J., and Reid, C.P.P., 1973, The growth of selected mycorrhizal fungi in response to induced water stress. Can. J. Bot. 51: 1579-1588.CrossRefGoogle Scholar
  138. Mohren, G.M.J., Van den Burg, J., and Burger, F.W., 1986, Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant Soil 95: 191-200.CrossRefGoogle Scholar
  139. Molina, R., and Trappe, J.M., 1982, Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For. Sci. 28: 423-458.Google Scholar
  140. Molina, R., and Trappe, J.M., 1994, Biology of the ectomycorrhizal genus, Rhizopogon. New Phytol. 126: 653-675.CrossRefGoogle Scholar
  141. Morin, C., Samson, J., and Dessureault, M., 1999, Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can. J. Bot. 77: 169-174.CrossRefGoogle Scholar
  142. Morte, A., Díaz, G., Rodríguez, P., Alarcón, J.J., and Sánchez-Blanco, M.J., 2001, Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in res-ponse to drought. Biol. Plant. 44: 263-267.CrossRefGoogle Scholar
  143. Nara, K., 2006a, Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169: 169-178.PubMedCrossRefGoogle Scholar
  144. Nara, K., 2006b, Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol. 171: 187-198.PubMedCrossRefGoogle Scholar
  145. Nara, K., and Hogetsu, T., 2004, Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85: 1700-1707.CrossRefGoogle Scholar
  146. Nara, K., Nakaya, H., and Hogetsu, T., 2003, Ectomycorrhizal sporocarps succession and production during early primary succession on Mount Fuji. New Phytol. 158: 193-206.Google Scholar
  147. Nardini, A., Salleo, S., Tyree, M.T., and Vertovec, M., 2000, Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings Ann. For. Sci. 57: 305-312.Google Scholar
  148. Newman, E.I., 1988, Mycorrhizal links between plants: their functioning and ecological significance. Adv. Ecol. Res. 18: 243-270.CrossRefGoogle Scholar
  149. Newton, A.C., and Pigott, C.D., 1990, Mineral nutrition and mycorrhizal infection of seedling oak and birch. New Phytol. 117: 37-44.CrossRefGoogle Scholar
  150. Odum, E.P., 1960, Organic production and turnover in old field succesion. Ecology 41: 34-49.CrossRefGoogle Scholar
  151. Parke, E.L., Linderman R.G. and Black, C.H., 1983, The role of ectomycorrhizas in drought tolerance of douglas-fir seedlings. New Phytol. 95: 83-95.CrossRefGoogle Scholar
  152. Pedersen, E.A., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. For. Pathol. 29: 123-134.Google Scholar
  153. Pedersen, E.A., Reddy, M.S., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur. J. For. Pathol. 29: 123-134.CrossRefGoogle Scholar
  154. Peters, N.K., Frost, J.W., and Long, S.R., 1986, A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977-980.PubMedCrossRefGoogle Scholar
  155. Quoreshi, A.M., and Timmer, V.R., 2000, Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Can. J. For. Res. 30:744-752.CrossRefGoogle Scholar
  156. Rambelli, A., 1973, The rhizosphere of mycorrhiza. In: Marks G.C., and Kozlowski T.T., eds., Ectomycorrhizae Their Ecology and Physiology. NewYork, Academic Press, 299-349.Google Scholar
  157. Rasanayagam, S., and Jeffries, P., 1992, Production of acid is responsible for antibiosis by some ectomycorrhizal fungi. Mycol. Res. 96: 971-976.CrossRefGoogle Scholar
  158. Read, D.J., 1989, Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc. R. Soc. Edinburgh 96B: 89-110.Google Scholar
  159. Read, D.J., 1992, The mycorrhizal fungal community with special references to nutrient mobilization. In: Carrol G.C., and Wicklow D.T., eds. The Fungal Community: Its Organi-zation and Role in the Ecosystem. New York, Marcel Dekker, 631-654.Google Scholar
  160. Read, D.J., 1997, Mycorrhizal fungi - the ties that bind. Nature 388: 517-518.CrossRefGoogle Scholar
  161. Redecker, D., Szaro, T.M., Bowman, R.J., and Bruns, T.D., 2001, Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol. Ecol. 10: 1025-1034.PubMedCrossRefGoogle Scholar
  162. Repáþ, I., 2007, Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum in peat and bark compost substrates. Forestry: doi:10.1093/forestry/cpm036Google Scholar
  163. Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., and Fiedler, H.P., 2006, Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. App. Environ. Microbiol. 72: 3550-3557.CrossRefGoogle Scholar
  164. Rousseau, J.V.D., Sylvia, D.M., and Fox, A.J., 1994, Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128: 639-644.CrossRefGoogle Scholar
  165. Ruotsalainen, A.L., Tuomi, J., and Väre, H., 2002, A model for optimal mycorrhizal colo-nization along altitudinal gradients. Silva Fennica 36: 681-694.Google Scholar
  166. Sampangi, R., Perrin, R., and Le Tacon, F., 1986, Disease suppression and growth promotion of Norway spruce and Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata in forest nurseries. In: Gianinazzi-Pearson V., and Gianinazzi S., eds. Physio-logical and Genetical Aspects of Mycorrhizae. 1st Europ. Symp. Mycorrhizae. Institut National de la Recherche Agronomique, Paris, 799-806.Google Scholar
  167. Samson, J., and Fortin, J.A., 1986, Ectomycorrhizal fungi of Larix laricina and the inter-specific and intraspecific variation in response to temperature. Can. J. Bot. 64: 3020-3028.CrossRefGoogle Scholar
  168. Sarand, I., Timonen, S., Nurmiaho-Lassila, E., Koivula, T., Haahtela, K., Romantschuk, M., and Sen, R., 1998, Microbial biofilms and catabolic plasmid harbouring degradatine fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petleum contaminated soil. FEMS Microbiol. Ecol. 27: 115-126.CrossRefGoogle Scholar
  169. Sarand, I., Timonen, S., Koivula, T., Peltola, R., Haahtela, K., Sen, R., and Romantschuk, M., 1999, Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J. Appl. Micro-biol. 86: 817-826.CrossRefGoogle Scholar
  170. Satomura, T., Nakatsubo, T., and Horikoshi, T., 2003, Estimation of the biomass of fine roots and mycorrhizal fungi: a case study in a Japanese red pine (Pinus densiflora) stand. J. For. Res. 8: 221-225.CrossRefGoogle Scholar
  171. Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006a, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 1: introduction to the direct methods to quantify the fungal content in ectomycorrhizal fine roots. Root Res. 15: 119-124.CrossRefGoogle Scholar
  172. Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006b, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 2: Ergosterol analysis method to quantify the fungal content in ectomycorrhizal fine root. Root Res. 15: 125-154.Google Scholar
  173. Schelkle, M., and Peterson, R.L., 1996, Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6: 481-485.CrossRefGoogle Scholar
  174. Schneider, B.U., Meyer, J., Schulze, E.-D., and Zech, W., 1989, Root and mycorrhizal deve-lopment in healthy and declining Norway spruce stand. In: Schulze E.-D., Lange O.L., and Oren R., eds. Forest Decline. Berlin, Springer, 370-391.Google Scholar
  175. Schrey, S.D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M.T., 2005, Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168: 205-216.PubMedCrossRefGoogle Scholar
  176. Sell, J., Kayser, A., Schulin, R., and Brunner, I., 2005, Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277: 245-253.CrossRefGoogle Scholar
  177. Sen, R., 2001, Multitrophic interactions between a Rhizoctonia sp., and mycorrhizal fungi affect Scots pine seedling performance in nursery soil. New Phytol. 152: 543-553.CrossRefGoogle Scholar
  178. Simard, S.W., and Durall, D.M., 2004, Mycorrhizal networks: a review of their extent, function, and importance. Can. J. Bot. 82: 1140-1165.CrossRefGoogle Scholar
  179. Smith, S.E., and Read, D.J., 1997, Mycorrhizal Symbiosis. 2nd edit. New York, Academic Press.Google Scholar
  180. Stankeviþienơ, D., and Peþiulytơ, D., 2004, Functioning of ectomycorrhizae and soil micro-fungi in deciduous forests situated along a pollution gradient next to a fertilizer factory. Pol. J. Environ. Stud. 13: 715-721.Google Scholar
  181. Stintzi, A., and Browse, J., 2000, The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625-10630.PubMedCrossRefGoogle Scholar
  182. Stotz, H.U., Bishop, J.G., Bergmann, C.W., Koch, M., Albersheim, P., Darvill, A.G., and Labavitch, J.M., 2000, Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol. Mol. Plant Pathol. 56: 117-130.CrossRefGoogle Scholar
  183. Strobel, N.E., and Sinclair, W.A., 1991a, Role of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-fir. Phytopathology 81: 420-425.CrossRefGoogle Scholar
  184. Strobel, N.E., and Sinclair, W.A., 1991b, Influence of temperature and pathogen aggressive-ness on biological control of Fusarium root rot by Laccaria bicolor in Douglas-fir. Phytopathology 81: 415-420.CrossRefGoogle Scholar
  185. Sun, Y., and Fries, N., 1992, The effect of tree-root exudates on the growth rate of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 1: 63-69.CrossRefGoogle Scholar
  186. Svenson, S.E., Davies, F.T. and Meier, C.E., 1991, Ectomycorrhizae and drought acclimation influence water relations and growth of Loblolly Pine. Hort Sci. HJHSAR 26: 1406-1409.Google Scholar
  187. Sylvia, D.M., 1983, Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil 71: 299-302.CrossRefGoogle Scholar
  188. Tam P.C.F., 1995, Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181-187.CrossRefGoogle Scholar
  189. Tammi, H., Timonen, S., and Sen, R., 2001, Spatio-temporal colonization of Scots pine roots by introduced and indigenous ectomycorrhizal fungi in forest humus and nursery Sphagnum peat microcosms. Can. J. For. Res. 35: 1-12.Google Scholar
  190. Taniguchi, T., Kanzaki, N., Tamai, S., Yamanaka, N., and Futai, K., 2007, Does ecto-mycorrhizal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol. 173: 322-334.PubMedCrossRefGoogle Scholar
  191. Taniguchi, T., Kataoka, R., and Futai, K., 2008, Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biol. Biochem. 40: 1235-1243.CrossRefGoogle Scholar
  192. Taylor, A.F.S., Gebauer, G., and Read, D.J., 2004, Uptake of nitrogen and carbon from double-labelled (15 N and 13 C) glycine by mycorrhizal pine seedlings. New Phytol. 164: 383-388.CrossRefGoogle Scholar
  193. Tedersoo, L., Pellet, P., Urmas, Kõljalg, U., and Selosse, M.A., 2007, Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151: 206-217.Google Scholar
  194. Teste, F.P., Karst, J., Jones, M.D., Simard, S.W., and Durall, D.M., 2006, Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza 17: 51-65. Ectomycorrhizae and their Importance285Google Scholar
  195. Tibbett, M., Sanders, F.E., and Cairney, J.W.G., 1998, The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol. Res. 102: 129-135.CrossRefGoogle Scholar
  196. Tilman, D., 1985, The resource-ratio hypothesis of plant succession. Am. Nat. 125: 827-852.CrossRefGoogle Scholar
  197. Tilman, D., 1987, Secondary succession and the pattern of plant dominance along experi-mental nitrogen gradients. Ecol. Monogr. 57: 189-214.CrossRefGoogle Scholar
  198. Tommerup, I.C., Kuek, C., and Malajczuk, N., 1987, Ectomycorrhizal inoculum production and utilization in Australia. Proc. 7th. Amer. Conf. Mycorrhizae, Gainesville, Florida, pp. 293-295.Google Scholar
  199. Turnau, K., Kottke, I., Dexheimer, J., and Botton, B., 1994, Element distribution in mycelium of Pisolithus arrhizus treated with cadmium dust. Ann. Bot. 74: 137-142.CrossRefGoogle Scholar
  200. Turnau, K., Kottke, I., and Drexheimer, J., 1996, Toxic elements filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol. Res. 100: 16-22.CrossRefGoogle Scholar
  201. van der Heijden, M. G. A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T. A., Wiemken, A., and Sanders, I.R., 1998, Mycorrhizal fungal diversity deter-mines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.CrossRefGoogle Scholar
  202. Vogt K.A., Grier C.C., Edmonds R.L., and Meier C.E., 1982, Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis [Dougl.] Forbes ecosystems in western Washington. Ecology 63: 370-380.CrossRefGoogle Scholar
  203. Vogt, K.A., Vogt, D.J., and Bloomfield, J., 1998, Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200: 71-89.CrossRefGoogle Scholar
  204. Walker, R.F., 2001, Growth and nutritional responses of containerized sugar and Jeffrey pine seedlings to controlled release fertilization and induced mycorrhization. For. Ecol. Manag. 149: 163-179.CrossRefGoogle Scholar
  205. Walker, T.S., Bais, H.P., Grotewold, E., and Vivanco, J.M., 2003, Root exudation and rhizosphere biology. Plant Physiol. 132: 44-51.PubMedCrossRefGoogle Scholar
  206. Wallander, H., 2000, Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218: 249-256.CrossRefGoogle Scholar
  207. Wallander, H., Nilsson, L.O., Hagerberg, D., and Bååth, E., 2001, Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151: 753-760.CrossRefGoogle Scholar
  208. Wallander, H., Göransson, H., and Rosengren, U., 2004, Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89-97.PubMedCrossRefGoogle Scholar
  209. Wallander, H., Fossum, A., Rosengren, U., and Jones, H., 2005, Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Mycorrhiza 15: 143-148.PubMedCrossRefGoogle Scholar
  210. Whipps, J.M., 2004, Prospects and limitations for mycorrhizals in biocontrol of root pathogens. Can. J. Bot. 82: 1198-1227.CrossRefGoogle Scholar
  211. Wu, B., Nara, K., and Hogetsu, T., 2005, Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol. 165: 285-293.PubMedCrossRefGoogle Scholar
  212. Wu T., Sharda J.N., and Koide R.T., 2003, Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytol. 159: 131-139.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Kazuyoshi Futai
    • 1
  • Takeshi Taniguchi
    • 1
  • Ryota Kataoka
    • 1
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations