Skip to main content

Abstract

Mycorrhizae establish symbiotic relationships with plants and play an essential role in plant growth, disease protection, and overall soil quality. Of the seven types of mycorrhizae described in current scientific literature (arbuscular, ecto, ectendo, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), the arbuscular and ectomycorrhizae are the most abundant and widespread. This chapter presents an overview of current knowledge of mycorrhizal interactions, processes, and potential benefits to society. The molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants is presented; the role of AM fungi in disease protection, alleviation of heavy metal stress and increasing grain production is also reviewed. Use of mycorrhizae, primarily AM and ectomycorrhizae (ECM), on plant growth promotion and disease suppression are discussed and their implications on sustainable agriculture are considered. The effect of co-inoculation of AM fungi and beneficial saprophytic mycoflora, in terms of plant growth promotion and root colonization, are discussed. The role of AM fungi in the restoration of native ecosystems and the mycorrhizosphere effect of multitrophic interactions are briefly outlined. The mechanisms by which mycorrhizae transform a disturbed ecosystem into productive land are briefly discussed. The importance of reintroduction of mycorrhizal systems in the rhizosphere is emphasiszed and their impact in landscape regeneration and in bioremediation of contaminated soils are discussed. The importance of ECM in forest ecosystems, and associations of ECM in tropical rainforests and their function in maintaining tropical monodominance are discussed. In Vitro mycorrhization of micropropagated plants and visualizing and quantifying endorhizal fungi are briefly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, C., and Warren, A., 1996, A framework for tackling drought and land degradation. J. Arid. Environ. 33: 309-320.

    Google Scholar 

  • Akema, T., and Futai, K., 2005, Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J. For. Res. 10: 93-99.

    Google Scholar 

  • Aliasgarzad, N., Neyshabouri, M.R., and Salimi, G., 2006, Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 61: 324-328.

    Google Scholar 

  • Al-Karaki, G.N., Al-Raddad, A., and Clark, R.B., 1998, Water stress and mycorrhizal isolate effects on growth and nutrient acquisition of wheat. J. Plant Nutr. 21: 891-902.

    CAS  Google Scholar 

  • Al-Karaki, G.N., Hammad, R., and Rusan, M., 2001, Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43-47.

    CAS  Google Scholar 

  • Allen, M.F., 1991, The Ecology of Mycorrhiza. Cambridge: Cambridge University Press, p. 184.

    Google Scholar 

  • Allen, M.F., 1992, Mycorrhizal Functioning: An Integrative Plant-Fungal Process. Routledge, NY: Chapman & Hall, p. 534.

    Google Scholar 

  • Allen, M.F., Swenson, W., Querejeta, J.I., Egerton-Warburton, L.M., and Treseder, K.K., 2003, Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann. Rev. Phytopathol. 41: 271-303.

    CAS  Google Scholar 

  • Allen, M.F., Allen, E.B., and Gómez-Pompa, A., 2005, Effects of mycorrhizae and non-target organisms on restoration of a seasonal tropical forest in Quintano Roo, Mexioco: factors limiting tree establishment. Restor. Ecol. 13: 325-533.

    Google Scholar 

  • Amaranthus, M.P., and Perry, D.A., 1987, Effect of soil transfer on ectomycorrhizal for-mation and the survival and growth of conifer seedlings on old, reforested clear-cuts. Can. J. For. Res. 17: 944-950.

    Google Scholar 

  • Amora-Lazcano, E., Vazquez, M.M., and Azcon, R., 1998, Response of nitrogen-trans-forming microorganisms to arbuscular mycorrhizal fungi. Biol. Fert. Soils 27: 65-70.

    CAS  Google Scholar 

  • Andrade, G., Linderman, R.G., and Bethlenfalvay, G.J., 1998a, Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202: 79-87.

    CAS  Google Scholar 

  • Andrade, G., Mihara, K.L., Linderman, R.G., and Bethlenfalvay, G.J., 1998b, Soil aggre-gation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202: 89-96.

    CAS  Google Scholar 

  • Asai, E., and Futai, K., 2001, Retardation of pine wilt disease symptom development in Japanese black pine seedlings exposed to simulated acid rain and inoculated with Bursaphelenchus xylophilus. J. For. Res. 6: 297-302.

    CAS  Google Scholar 

  • Assigbetse, K., Gueye, M., Thioulouse, J., and Duponnois, R., 2005, Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth depen-dent. Microb. Ecol. 50: 350-359.

    PubMed  Google Scholar 

  • Auge, R.M., 2001, Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.

    Google Scholar 

  • Azcón, R., and Ocampo, J.A., 1981, Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 87: 677-685.

    Google Scholar 

  • Balestrini, R., and Bonfante, P., 2005, The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst. 139: 8-15.

    Google Scholar 

  • Baon, J.B., Smith, S.E., Alston, A.M., and Wheeler, R.D., 1992, Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust. J. Agric. Res. 43: 479-491.

    CAS  Google Scholar 

  • Barea, J.M., 1986, Importance of hormones and root exudates in mycorrhizal phenomena. In: Mycorrhizae: Physiology and Genetics. 1st Eur. Symp. Mycor. Paris: ESM, Dijon, INRA, pp. 177-187.

    Google Scholar 

  • Barea, J.M., Azcón-Aguilar, C., and Azcón, R., 1997, Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soli-plant systems. In: Gange, A.C., and Brown, V.K. (eds.), Multitrophic Interactions in Terrestrial Systems. Cambridge: Backwell Science, pp. 65-77.

    Google Scholar 

  • Bending, G.D., and Read, D.J., 1995, The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behavior and translocation of nutrients from exploited litter. New Phytol. 130: 401-409.

    CAS  Google Scholar 

  • Bethlenfalvay, G.J., 1992, Mycorrhizae and crop productivity. In: Bethlenfalvay, G.J., and Linderman, R.G. (eds.), Mycorrhizae in Sustainable Agriculture. Madison, WI: ASA Special Publication No. 54, pp. 1-27.

    Google Scholar 

  • Bethlenfalvay, G.J., and Linderman, R.G., 1992, Mycorrhizae in Sustainable Agriculture. St Paul, MN: The American Phytopathological Society Special Publication No. 54, p. 124.

    Google Scholar 

  • Bethlenfalvay, G.J., and Schüepp, H., 1994, Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi, S. and Schüepp, H. (eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Basel Switzerland: Birkhäuser Verlag, pp. 117-131.

    Google Scholar 

  • Bidartondo, M.I., Redecker, D., Hijri, I., Wiemken, A., Bruns, T.D., Domínguez, L., Sérsic, A., Leake, J.R., and Read, D.J., 2002, Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419: 389-392.

    CAS  PubMed  Google Scholar 

  • Biggs, W.L., and Alexander, I.J., 1981, A culture unit for the study of nutrient uptake by intact mycorrhizal plants under aseptic conditions. Soil Biol. Biochem. 13: 77-78.

    Google Scholar 

  • Bowen, G.D., 1973, Mineral nutrition of mycorrhizas. In: Marks, G.C., and Kozlowski, T.C. (eds.), Ectomycorrhizas. . New York/London: Academic, pp. 151-201.

    Google Scholar 

  • Boyd, R., Furbank, R.T., and Read D.J., 1986, Ectomycorrhiza and the water relations of trees. In: Gianinazzi-Pearson, V., and Gianinazzi, S. (eds.), Mycorrhizae, Physiology and Genetics. Paris: INRA, pp. 689-693.

    Google Scholar 

  • Brady, N.C., and Weil, R.R., 2002, The Nature and Properties of Soils. New Jersey: Prentice Hall, p. 960.

    Google Scholar 

  • Brundrett, M.C., 2002, Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275-304.

    Google Scholar 

  • Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N., 1996, Working with Mycorrhizas in Forestry and Agriculture. Canberra Australia: ACIAR.

    Google Scholar 

  • Brunner, I., 1991, Comparative studies on ectomycorrhizae synthesized with various in vitro techniques using Picea abies and two Hebeloma species. Trees 5: 90-94.

    Google Scholar 

  • Bucher, M., 2007, Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11-26.

    CAS  PubMed  Google Scholar 

  • Calvet, C., Barea, J.M., and Pera, J., 1992, In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24: 775-780.

    Google Scholar 

  • Calvet, C., Pera, J., and Barea, J.M., 1993, Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture. Plant Soil 148: 1-6

    Google Scholar 

  • Carrillo-García, A., Leon de la Luz, J.L., Bashan, Y., and Bethlenfalvay, G.J., 1999, Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor. Ecol. 7: 321-335.

    Google Scholar 

  • Carter, M.R., and Campbell, A.J., 2006, Influence of tillage and liquid swine manure on productivity of a soybean-barley rotation and some properties of a fine sandy loam in Prince Edward Island. Can. J. Soil Sci. 86: 741-748.

    Google Scholar 

  • Cavigelli, M.A., Robetson, G.P., and Klug, M.J., 1995, Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170: 99-113.

    CAS  Google Scholar 

  • Chalot, M., Blaudez, D., and Brun, A., 2006, Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Tren. Plant Sci. 11: 263-266.

    CAS  Google Scholar 

  • Connell, J.H., and Lowman, M.D., 1989, Low-diversity tropical rain forests: some possible mechanisms for their existence. Amer. Natural. 134: 88-119.

    Google Scholar 

  • Covacevich, F., Echeverría, H.E., and Andreoli, Y.E., 1995, Micorrización vesículo arbus-cular espontánea en trigo en función de la disponibilidad de fósforo. Ciencia del Suelo 13: 47-51.

    CAS  Google Scholar 

  • Covacevich, F., Echeverría, H.E., and Aguirrezabal, L.A.N., 2007, Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Appl. Soil Ecol. 35: 1-9.

    Google Scholar 

  • Danielson, R.M., and Visser, S., 1989, Host response to inoculation and behaviour of induced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can. J. For. Res. 19: 1412-1421.

    Google Scholar 

  • Davet, P., 1996, Vie microbienne du sol et production végétale. Paris: INRA.

    Google Scholar 

  • Degens, B.P., and Vojvodic-Vukovic, M., 1999, A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Austr. J. Soil Res. 37: 593-601.

    Google Scholar 

  • Del Val, C., Barea, J.M., and Azcon-Aguilar, C., 1999, Diversity of arbuscular mycorr-hizal fungus populations in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 65: 718-723.

    CAS  PubMed  Google Scholar 

  • De Oliveira, V.L., and Garbaye, J., 1989, Les microorganismes auxiliaires de l’établissement des symbioses ectomycorhiziennes. Eur. J. Pathol. 19: 54-64.

    Google Scholar 

  • Díez, J., and Manjón, J.L., 1996, Mycorrhizal formation by vitroplants of Cistus albidus L. and C. salvifolius L. and its interest for truffle cultivation in poor soils. In: AzcónAguilar, B. and Barea, J.M. (eds.), Mycorrhizas in Integrated Systems from Genes to Plant Development. Brussels: European Commission, pp. 528-530.

    Google Scholar 

  • Díez, J., Manjón, J.L., Kovács, G.M., Celestino, C., and Toribio, M., 2000, Mycorrhization of vitroplants raised from somatic embryos of cork oak (Quercus suber L.) Appl. Soil Ecol. 15: 119-123.

    Google Scholar 

  • Duddridge, J.A., and Read, D.J., 1984, Modification of the host-fungus interface in mycorrhizas synthesized between Suillus bovinus (Fr.) O. Kuntz and Pinus sylvestris L. New Phytol. 96: 583-588.

    Google Scholar 

  • Duddridge, J.A., Malibari, A., and Read, D.J., 1980, Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834-836.

    Google Scholar 

  • Feil, W., Kottke, I., and Oberwinkler, F., 1988, The effect of drought on mycorrhizal pro-duction and very fine root system development of norway spruce under natural and experimental conditions. Plant Soil 108: 221-231.

    Google Scholar 

  • Ferris, M.J., Muyzer, G., and Ward, D.M., 1996, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat commu-nity. Appl. Envir. Microbiol. 62: 340-346.

    CAS  Google Scholar 

  • Filion, M., St-Arnaud, M., and Fortin, J.A., 1999, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141: 525-533.

    Google Scholar 

  • Fortin, J.A., Piché, Y., and Godbout, C., 1983, Methods for synthesizing ectomycorrhizas and their effect on mycorrhizal development. Plant Soil 71: 275-284.

    Google Scholar 

  • Francis, C.F., and Thornes, J.B., 1990, Matorral: erosin and reclamation. In: Albadalejo, J., Stocking, M.A., and Díaz, E. (eds.), Soil Degradation and Rehabilitation in Mediterranean Environmental Conditions. Murcia, Spain: CSIC, pp. 87-115.

    Google Scholar 

  • Frank, A.B., 1885, Uber di auf werzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdischeplize. Ber. Dtsch. Bot. Ges. 3: 128-145.

    Google Scholar 

  • Frey-Klett, P., Chavatte, M., Clausse, M.L., Courrier, S., Le Roux, C., Raaijmakers, J., Martinotti, M.G., Pierrat, J.C., and Garbaye, J., 2005, Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol. 165: 317-328.

    PubMed  Google Scholar 

  • Fung, M.Y.P., and Macyk, T.M., 2000, Reclamation of oil sand mining areas. In: R.I., Barnhisel, R.I., Darmody, R.G., and Daniels, W.L. (eds.), Reclamation of Drastically Disturbed Lands. American Society of Agronomy monographs, 2nd edn. 41: 755-744.

    Google Scholar 

  • Garbaye, J., 1991, Biological interactions in the mycorrhizosphere. Experientia 47: 370-375.

    Google Scholar 

  • Garcia-Romera, I., Garcia-Garrido, J.M., Martin, J., Fracchia, S., Mujica, M.T., Godeas, A., and Ocampo, J.A., 1998, Interaction between saprophytic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24: 235-246.

    Google Scholar 

  • Gaur, A., and Adholeya, A., 2004, Prospects of arbuscular mycorrhizal fungi in phytore-mediation of heavy metal contaminated soils. Curr. Sci. 86: 528-534.

    CAS  Google Scholar 

  • Gianinazzi-Pearson, V., and Diem, H.G., 1982, Endomycorrhizae in the tropics. In:Dommergues, Y.R., and Diem, H.G. (eds.), Microbiology of Tropical Soil and Plant Productivity. The Hague: Martinus Nijhoff/Dr Junk W. Publishers.

    Google Scholar 

  • Giller, K.E., Beare, M.H., Lavelle, P., Izac, A.-M.N., and Swift, M.J., 1997, Agricultural intensification, soil biodiversity and agroeco-system function. Appl. Soil Ecol. 6: 3-16.

    Google Scholar 

  • Gohre, V., and Paszkowski, U., 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115-1122.

    PubMed  Google Scholar 

  • Govindarajulu, M., Pfeffer, P., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bücking, H., Lammers, P.J., and Shachar-Hill, Y., 2005, Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819-823.

    CAS  PubMed  Google Scholar 

  • Green, H., Larsen, J., Olsson, P.A., Jensen, D.F., and Jakobsen, I., 1999, Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Environ. Microbiol. 65: 1428-1434.

    CAS  PubMed  Google Scholar 

  • Grellier, B., Letouzé, R., and Strullu, D.G., 1984, Micropropagation of birch and mycorrhizal formation in vitro. New Phytol. 97: 591-599.

    Google Scholar 

  • Hacskaylo, E., 1972, Mycorrhiza: the ultimate in reciprocal parasitism? BioScience 22: 577-582.

    Google Scholar 

  • Harley, J.L., and Smith, S.E. 1983, Mycorrhizal symbiosis. London: Academic.

    Google Scholar 

  • Harrier, L.A., and Watson, C.A., 2004, The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 60: 149-157.

    CAS  PubMed  Google Scholar 

  • Harrison, M., 1999, Biotrophic interfaces and nutrient transport in plant/fungal interfaces. J. Exp. Bot. 50: 1013-1022.

    CAS  Google Scholar 

  • Harrison, M.J. 1996, A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J. 9: 491-503.

    CAS  PubMed  Google Scholar 

  • Harrison, M.J., and Buuren, M.Lv., 1995, A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626-629.

    CAS  PubMed  Google Scholar 

  • Harrison, M.J., Dewbre, G.R., and Liu, J., 2002, A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413-2429.

    CAS  PubMed  Google Scholar 

  • Hawksworth, D.L., 1991, The fungal dimension of biodiversity: magnitude significance and conservation. Mycol. Res. 95: 641-655.

    Google Scholar 

  • Herrera, M.A., Salamanca, C.P., and Barea, J.M., 1993, Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl. Environ. Microbiol. 59: 129-133.

    PubMed  CAS  Google Scholar 

  • Herrmann, S., Munch, J.-C., and Buscot, F., 1998, A gnotobiotic culture system with oak microcuttings to study specific effects of mycobionts on plant morphology before, and in the early phase of, ectomycorrhiza formation by Paxillus involutus and Piloderma croceum. New Phytol. 138: 203-212.

    Google Scholar 

  • Heslin, M.C., and Douglas, G.C., 1986, Effects of ectomycorrhizal fungi on growth and development of poplar plants derived from tissue culture. Sci. Hort. 30: 143-149.

    Google Scholar 

  • Hetrick, B.A.D., Wilson, G.W.T., and Cox, T.S., 1993, Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis, Can J. Bot. 71: 512-517.

    Google Scholar 

  • Hibbett, D.S., Gilbert, L.B., and Donoghue, M.J., 2000, Evolutionary instability of ecto-mycorrhizal symbioses in basidiomycetes. Nature 407: 506-508.

    CAS  PubMed  Google Scholar 

  • Hodge, A., Campbell, C.D., and Fitter, A.H., 2001, An arbuscular mycorrhizal fungus accele-rates decomposition and acquires nitrogen directly from organic material. Nature 413: 297-299.

    CAS  PubMed  Google Scholar 

  • Hossain, M.M., Sultana, F., Kubota, M., Koyama, H., and Hyakumachi, M., 2007, The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48: 1724-1736.

    CAS  PubMed  Google Scholar 

  • Hyakumachi, M., and Kubota, M., 2004a, Biological control of plant diseases by plant growth promoting fungi. Proc. Int. Sem. Biological Cont. Soilborne Plant Dis., Japan-Argentina Joint Study, pp. 87-123.

    Google Scholar 

  • Hyakumachi, M., and Kubota, M., 2004b, Fungi as plant growth promoter and disease suppressor. In: Arora, D.K. (ed.), Fungal Biotechnology in Agricultural, Food, and Envi-ronmental Applications. New York: Marcel Dekker, pp. 101-110.

    Google Scholar 

  • Ibekwe, A.M., and Kennedy, A.C., 1998, Fatty acid methyl ester (FAME) profiles as tool to investigate community structure of two agricultural soils. Plant Soil 206: 151-161.

    CAS  Google Scholar 

  • Jakobsen, I., and Nielsen, N.E., 1983, Vesicular-arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas as various times and soil depths. New Phytol. 93: 401-413.

    Google Scholar 

  • Jamal, A., Ayub, N., Usman, M., and Khan, A.G., 2002, Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soyabean and lentil. Int. J. Phytoremed. 4: 205-221.

    CAS  Google Scholar 

  • Janos, D.P., 2007, Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17: 75-91.

    PubMed  Google Scholar 

  • Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R., and Harrison, M.J., 2007a, A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 104: 1720-1725.

    CAS  PubMed  Google Scholar 

  • Javot, H., Pumplin, N., and Harrison, M.J., 2007b, Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 30: 310-322.

    CAS  PubMed  Google Scholar 

  • Jawson, M.D., Franzlubbers, A.J., Galusha, D.K., and Aiken, R.M., 1993, Soil fumigation within monoculture and rotations—response of corn and mycorrhizae. Agron. J. 85: 1174-1180.

    Google Scholar 

  • Jeffries, P., and Barea, J.M., 2000, Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock, B. (ed.), The Mycota. IX. Fungal Associations. Berlin: Springer KG, pp. 95-113.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J.M., 2003, The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility, Biol. Fert. Soils 37: 1-16.

    Google Scholar 

  • Johansson, J.F., Paul, L.R., and Finlay, R.D., 2004, Microbial interactions in the mycorr-hizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48: 1-13.

    CAS  PubMed  Google Scholar 

  • Jones, M.D., Durall, D.M., and Tinker, P.B., 1991, Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol. 119: 99-106.

    CAS  Google Scholar 

  • Kabir, Z., and Koide, R.T., 2000, The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric. Eco. Environ. 78: 167-174.

    Google Scholar 

  • Katznelson, H., Rouatt, J.W., and Peterson, E.A., 1962, The rhizosphere effect of mycorrhizal and nonmycorrhizal roots of yellow birch seedlings. Can. J. Bot. 40: 377-382.

    Google Scholar 

  • Khan, A.G., 2005, Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18: 355-364.

    CAS  PubMed  Google Scholar 

  • Khan, A.G., 2006, Mycorrhizoremediation- an enhanced form of phytoremidiation. J Zhejiang Univ. Science B 7: 503-514.

    Google Scholar 

  • Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., and Hayes, W.J., 2000, Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemo-sphere 41: 197-207.

    CAS  Google Scholar 

  • Kirchmann, H., and Thorvaldsson, G., 2000, Challenging targets for future agriculture. Eur. J. Agron. 12: 145-161.

    Google Scholar 

  • Klironomos, J.N., 2003, Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301.

    Google Scholar 

  • Knudsen, I.M.B., Debosz, K., Hockenhull, J., Jensen, D.F., and Elmholt, S., 1995, Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl. Soil Ecol. 12: 61-72.

    Google Scholar 

  • Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., and Doke, N., 2001, Induction of systemic resistance in cucumber against several diseases by plant growth promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107: 523-533.

    CAS  Google Scholar 

  • Lakhanpal, T.N., 2000, Ectomycorrhiza-an overview. In: Mukerji, K.G., Chamola, B.P., and Singh, J. (eds.), Mycorrhizal Biology. New York: Kluwer Academic/Plenum, 336 pp., pp. 101-118.

    Google Scholar 

  • Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., and van Breemen, N., 2001, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16: 248-254.

    PubMed  Google Scholar 

  • Leigh, E.G., Davidar, P., Dick, C.W., Puyravaud, J., Terborgh, J., ter Steege, H., and Wright, S.J., 2004, Why do some tropical forests have so many species of trees? Biotropica 36: 445-473.

    Google Scholar 

  • Leyval, C., and Berthelin, J., 1993, Rhizodeposition and net release of soluble organic compounds of pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol. Fert. Soils 15: 259-267.

    CAS  Google Scholar 

  • Linderman, R.G., 1988, Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78: 366-371.

    Google Scholar 

  • Linderman, R.G., 1992, VA mycorrhizae and soil microbial interactions. In: Bethelenfalvay, G.J., and Linderman, R.G. (eds.), Mycorrhizae in Sustainable Agriculture. Madison, WI: ASA Special Publication No. 54, pp. 45-70.

    Google Scholar 

  • Linderman, R.G., and Paulitz, T.C., 1990, Mycorrhizal-rhizobacterial interactions. In: Hornby, D., Cook, R.J., Henis, Y., Ko, W.H., Rovira, A.D., Schippers, B., and Scott, P.R. (eds.), Biological Control of Soil-Borne Plant Pathogens. Wallingford, UK: CAB International, pp. 261-283.

    Google Scholar 

  • López-Bermúdez, F., and Albaladejo, J., 1990, Factores ambientales de la degradación del suelo en el area mediterránea. In: Albadalejo, J., Stocking, M.A., and Díaz, E. (eds.), Soil Degradation and Rehabilitation in Mediterranean Environmental Conditions. Murcia, Spain: CSIC, pp. 15-45.

    Google Scholar 

  • Lopez-Pedrosa, A., Gonzalez-Guerrero, M., Valderas, A., Azcon-Aguilar, C., and Ferrol, N., 2006, GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet. Biol. 43: 102-110.

    CAS  PubMed  Google Scholar 

  • Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002, Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.

    CAS  PubMed  Google Scholar 

  • Malajczuk, N., Redell, P., and Brundrett. M., 1994, The role of ectomycorrhizal fungi in minesite reclamation. In: Pfleger, F.L., and Linderman, R.G. (eds.), Mycorrhizae and Plant Health. St Paul, MN: The Amer. Phytopathol. Soc.

    Google Scholar 

  • Martins, A., 1992, Micorrização in vitro de plantas micropropagadas de Castanea sativa Mill. Dissertação para obtenção do grau de mestre. Faculdade de Ciências de Lisboa, 124 pp.

    Google Scholar 

  • Martins, A., 2004, Micorrização controlada de Castanea sativa Mill.: Aspectos fisiológicos da micorrização in vitro e ex vitro. Dissertação de doutoramento em Biologia/Biotecnologia Vegetal. Faculdade de Ciências de Lisboa. Universidade Clássica de Lisboa, 506 pp.

    Google Scholar 

  • Martins, A., Barroso, J., and Pais, M.S., 1996, Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Mycorrhiza 6: 265-270.

    Google Scholar 

  • Marx, D.H., 1969, The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.

    Google Scholar 

  • Marx, D.H., and Cordell, C.E., 1989, Use of ectomycorrhizas to improve forestation practices. In: Whipps, J.M., and Lumsden, R.D. (eds.), Biotechnology of Fungi for Impro-ving Plant Growth. Cambridge: Cambridge University Press, pp. 1-25.

    Google Scholar 

  • McAllister, C.B., Garcia-Garrido, J.M., García-Romera, I., Godeas, A., and Ocampo, J.A., 1996, In vitro interactions between Alternaria alternata, Fusarium equiseti and Glomus mosseae. Symbiosis 20: 163-174.

    Google Scholar 

  • McGuire, K.L., 2007a, Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88: 567-574.

    PubMed  Google Scholar 

  • McGuire, K.L., 2007b, Ectomycorrhizal Associations Function to Maintain Tropical Monodominance: Studies from Guyana. Ann Arbor, MI: Ph.D. dissertation, University of Michigan.

    Google Scholar 

  • McGuire, K.L., 2007c, Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. J. Trop. Ecol. 23: 297-307.

    Google Scholar 

  • Meharg, A.A., and Cairney, J.W.G., 2000, Ectomycorrhizas- extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32: 1475-1484.

    CAS  Google Scholar 

  • Mertz, W., 1981, The essential trace elements. Science 213: 1332-1338.

    CAS  PubMed  Google Scholar 

  • Meyer, F.H., 1987, Extreme site conditions and ectomycorrhizae (especially Cenococcum geophyllum). Mycorrhiza and Plant Stress. Mykorrhiza und bei Pflanzen. Angew. Bot., pp. 39-46.

    Google Scholar 

  • Miller, R.M., 1987, Mycorrhizae and succession. In: Jordan III, W.R., Gilpin, M.E., and Aber, J.D. (eds.), Restoration Ecology: A Synthetic Approach to Ecological Research. New York: Cambridge University Press pp. 205-219.

    Google Scholar 

  • Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J., and Torabi, H., 2007, Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol. Biochem. 39: 2014-2026.

    CAS  Google Scholar 

  • Morte, M.A., Cano, A., Honrubia, M., and Torres, P., 1994, In vitro mycorrhization of micro-propagated Helianthemum almeriense plantlets with Terfezia claveryi (desert truffle). Agric. Sci. Finland 3: 309-314.

    Google Scholar 

  • Mozafar, A., Anken, T., Ruh, R., and Frossard, E., 2000, Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron. J. 92: 1117-1124.

    CAS  Google Scholar 

  • Muyzer, G., and Smalla, K., 1988, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127-141.

    Google Scholar 

  • Nichols, K.A., and Wright, S.F., 2004, Contributions of soil fungi to organic matter in agricultural soils. In: Magdoff, F., and Weil, R. (eds.), Functions and Management of Soil Organic Matter in Agroecosystems. Washington, DC: CRC, pp. 179-198

    Google Scholar 

  • Normand, L., Bartschi, H., Debaud, J.-C., and Gay, G., 1996, Rooting and acclimatization of micropropagated cuttings of Pinussylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol. Plant. 98: 759-766.

    CAS  Google Scholar 

  • Nowak, J., 1998, Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In vitro Cell. Dev. Biol. Plant 34: 122-130.

    Google Scholar 

  • Nylund, J.E., 1980, Symplastic continuity during Hartig net formation in Norway Spruce ectomycorrhizae. New Phytol. 86: 373-378.

    Google Scholar 

  • Olsson, P.A., Chalot, M., Bååth, E., Finlay, R.D., and Söderström, B., 1996, Ectomycorrhizal mycelia reduce bacterial activity in sandy soil. FEMS Microbiol. Ecol. 21: 77-86.

    CAS  Google Scholar 

  • Ormsby, A., Hodson, E., Li, Y., Basinger, J., and Kaminskyj, S., 2007, Arbuscular mycorrhizae associated with Asteraceae in the Canadian High Arctic: the value of herbarium archives. Can. J. Bot. 85: 599-606.

    Google Scholar 

  • Pankhurst, C.E., Ophel-Keller, K., Doube, B.M., and Gupta V.V.S.R., 1996, Biodiversity of soil microbial communities in agricultural systems. Biodiv. Conser. 5: 197-209.

    Google Scholar 

  • Pfleger, F.L., and Linderman, R.G., 1996, Mycorrhiza and Plant Health, 2nd edn.. USA: APS.

    Google Scholar 

  • Piché, Y., and Peterson, R.L., 1988, Mycorrhiza initiation: an example of plant microbial interactions In: Fredrick, A., and Valentine, E.D. (eds.), Forest and Crop Biotechnology. Progress and Prospects. New York: Springer.

    Google Scholar 

  • Poissonier, M., 1986, Mycorhization in vitro de clones d´eucalyptus. Annales AFOCEL. Note de laboratoire: 81-93.

    Google Scholar 

  • Preger, A.C., Rillig, M.C., Johns, A.R., Du Preez, C.C., Lobe, I., and Amelung, W., 2007, Losses of glomalin-related soil protein under prolonged arable cropping: a chrono-sequence study in sandy soils of the South African Highveld. Soil Biol. Biochem. 39: 445-453.

    CAS  Google Scholar 

  • Rambelli, A., 1973, The rhizosphere of mycorrhizae. In: Marks, G.C., and Kozlowski, T.T. (eds.), Ectomycorrhizae: Their Ecology and Physiology. New York: Academic, pp. 299-343.

    Google Scholar 

  • Rancillac, M., 1982, Multiplication végétative in vitro et synthèse mycorhizienne: pin maritime, Hebelome, Pisolithe. Les colloques de l´ÌNRA. 13: 351-355.

    Google Scholar 

  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N., and Bucher, M., 2001, A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462-470.

    CAS  PubMed  Google Scholar 

  • Read, D.J., Leake, J.R., and Langdale, A.R., 1989, The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy, L., Marchant, R., and Read, D.J. (eds.), Nitrogen, Phosphorus, and Sulphur Utilization by Fungi. Cambridge: Cambridge University Press, pp. 181-204.

    Google Scholar 

  • Redecker, D., Morton, J.B., and Bruns, T.D., 2000, Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol. Phylogen. Evol. 14: 276-284.

    CAS  Google Scholar 

  • Requena, N., Jeffries, P., and Barea, J.M., 1996, Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl. Environ. Microbiol. 62: 842-847.

    CAS  PubMed  Google Scholar 

  • Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84: 355-363.

    Google Scholar 

  • Rillig, M.C., and Mummey, D.L., 2006, Tansley review - mycorrhizas and soil structure. New Phytol. 171: 41-53.

    CAS  PubMed  Google Scholar 

  • Rillig, M.C., Caldwell, B.A., Wosten, H.A.B., and Sollins, P., 2007, Role of protein in soil carbon and nitrogen storage: controls on persistence. Biogeochem. 85: 25-44.

    CAS  Google Scholar 

  • Robertson, S.J., McGill, W.B., Massicotte, H.B., and Rutherford, P.M., 2007. Petrolium hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol. Res. 82: 213-240.

    Google Scholar 

  • Roldan, A., Salinas-Gracia, J.R., Alguacil, M.M., and Caravaca, F., 2007, Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil Till. Res. 93: 273-282.

    Google Scholar 

  • Rubio, R., Borie, F., Schalchli, C., Castillo, C., and Azcón, R., 2003, Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl. Soil Ecol. 23: 245-255.

    Google Scholar 

  • Ryan, M.H., and Graham, J.H., 2002, Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244: 263-271.

    CAS  Google Scholar 

  • Rygiewicz, P.T., and Andersen, C.P., 1994, Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369: 58-60.

    Google Scholar 

  • Sanchez, P.A., 1994, Properties management of soils in the tropics. New York: Wiley-Interscience.

    Google Scholar 

  • Sawers, R., Gutjahr, C., and Paszkowski, U., 2008, Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Tren. Plant Sci. 13: 93-97.

    CAS  Google Scholar 

  • Sbrana, C., Giovannetti, M., and Vitagliano, C., 1994, The effect of mycorrhizal infection on survival and growth renewal of micropropagated fruit rootstocks. Mycorrhiza 5: 153-156.

    Google Scholar 

  • Schreiner, R.P., Milhara, K.L., McDaniel, H., and Bethlenfalvay, G.J., 1997, Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188: 199-209.

    CAS  Google Scholar 

  • Schüöler, A., Schwarzott, D., and Walker, C., 2001, A new fungal phylum, the glomero-mycota: phylogeny and evolution. Mycol. Res. 105: 1413-1421.

    Google Scholar 

  • Schussler, A., Martin, H., Cohen, D., Fitz, M., and Wipf, D., 2006, Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444: 933-936.

    PubMed  Google Scholar 

  • Schweiger, P.F., and Jakobsen, I., 1999, Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agron. J. 91: 998-1002.

    Article  Google Scholar 

  • SER (Society for Ecological Restoration International Science and Policy Working Group), 2004, The SER International Primer on Ecological Restoration (available from http://www.ser.org) accessed in July 2005. Tucson, AZ: Society for Ecological Restoration International.

  • Siddiqui, Z.A., and Mahmood, I., 1995, Role of plant symbionts in nematode management: a Review. Bioresource Technol. 54: 217-226.

    CAS  Google Scholar 

  • Siddiqui, Z.A., Mahmood, I., and Khan, M.W., 1999, VAM fungi as prospective biocontrol agents for plant parasitic nematodes. In: Bagyaraj, D.J., Verma, A., Khanna, K.K., and Kehri, H.K. (eds.), Modern Approaches and Innovations in Soil Management. Meerut, India: Rastogi, pp. 47-58.

    Google Scholar 

  • Six, J., Carpenter, A., van Kessel, C., Merck, R., Harris, D., Horwath, W.R., and Lüscher, A., 2001. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234: 27-36.

    CAS  Google Scholar 

  • Skujins, J., and Allen, M.F., 1986, Use of mycorrhizae for land rehabilitation. MIRCEN J. 2: 161-176.

    Google Scholar 

  • Smith, S.E., and Read, D. J., 1997, Mycorrhizal Symbiosis, 2nd edn. London: Academic.

    Google Scholar 

  • St-Arnaud, M., and Vujanovic, V., 2007, Effects of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel, C., and Plenchette, C. (eds.), Mycorrhizae in Crop Production. New York: Haworth, pp. 67-122.

    Google Scholar 

  • Subramanian, K.S., and Charest, C., 1999, Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9: 69-75.

    CAS  Google Scholar 

  • Sun, Y.P., Unestam, T., Lucas, S.D., Johanson, K.J., Kenne, L., and Finlay, R.D., 1999, Exudation reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9: 137-144.

    CAS  Google Scholar 

  • Swift, M.J., 1998, Toward the second paradigm: integrated biological management of soil. Paper presented for the FERTBIO Conference, Brazil.

    Google Scholar 

  • Sylvia, D.M., and Williams, S.E., 1992, Mycorrhizae and environmental stresses. In: Bethlenfalvay, G.J., and Linderman, R.G. (eds.), Mycorrhizae in Sustainable Agriculture. Madison, WI: ASA Special Publication No. 54, pp. 101-124.

    Google Scholar 

  • Talukdar, N.C., and Germida, J.J., 1994, Growth and yield of lentil and wheat inoculated with three Glomus isolates form Saskatchewan soils. Mycorrhiza 5: 145-152.

    Google Scholar 

  • Taylor, J., and Harrier, L.A., 2001, A comparison of development and mineral nutrition of micropropagated Fragaria × ananassa cv. Elvira (strawberry) when colonized by nine species of arbuscular mycorrhizal fungi. Appl. Soil Ecol. 18: 205-215.

    Google Scholar 

  • Thompson, P., 1990, Soil sterilization methods to show VA mycorrhizae aid P and Zn nutrition of wheat in vertisols. Soil Biol. Biochem. 22: 229-240.

    CAS  Google Scholar 

  • Tonkin, C.M., Malajczuk, N., and McComb, J.A., 1989, Ectomycorrhizal formation by micro-propagated clones of Eucalyptus marginata inoculated with isolates of Pisolithus tinctorius. New Phytol. 111: 209-214.

    Google Scholar 

  • Torti, S.D., and Coley, P.D., 1999, Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica 31: 220-228.

    Google Scholar 

  • Torti, S.D., Coley, P.D., and Kursar, T.A., 2001, Causes and consequences of monodo-minance in tropical lowland forests. Amer. Natur. 157: 141-153.

    CAS  Google Scholar 

  • Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S., 1982, Les endomycorrhizes en agriculture: recherches sur le blé. In: INRA, Les Colloques de l’INRA, Editor, Les mycorrhizes: biologie et utilisation vol. 13. Paris: INRA.

    Google Scholar 

  • Uehlein, N., Fileschi, K., Eckert, M., Bienert, G.P., Bertl, A., and Kaldenhoff, R., 2007, Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68: 122-129.

    CAS  PubMed  Google Scholar 

  • Valencia, R.H., Balslev, H., Paz, H., and Mino, C.G., 1994, High tree alpha-diversity in Amazonian Ecuador. Biodiv. Conserv. 3: 21-28.

    Google Scholar 

  • Vallejo, V.R., Bautista, S., and Cortina, J.R., 1999, Restoration for soil protection after dis-turbances. In: Trabaud, L. (ed.), Life and Environment in the Mediterranean. Wessex, UK: Wit, pp. 301-343.

    Google Scholar 

  • Van den Driessche, R., 1991, Effects of nutrients on stock performance in the forest. In: Mineral Nutrition of Conifer Seedlings. Boca Raton, FL/Ann Arbor, MI/Boston, MA: CRC, pp. 229-260.

    Google Scholar 

  • Van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T.A., Wiemken, A., and Sanders, I.R., 1998, Mycorrhizal fungal diversity deter-mines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.

    CAS  Google Scholar 

  • Van der Heijden, M.G.A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., Boller, T., Wiemken, A., and Sanders, I.R., 2006, The mycorrhizal contribution to plant productivity, plant nutrition, and soil structure in experimental grassland. New Phytol. 172: 739-752.

    PubMed  Google Scholar 

  • Vogelsang, K.M., Reynolds, H.L., and Bever, J.D., 2006, Mycorrhizal fungal identity and richness determine the diversity and productivity of tallgrass prairie system. New Phytol. 172: 554-562.

    PubMed  Google Scholar 

  • Warren, A., Sud, Y.C., and Rozanov, B., 1996, The future of deserts. J. Arid. Environ. 32: 75-89.

    Google Scholar 

  • Woomer, P.L., and Swift, M.J., 1994, The Biological Management of Tropical Soil Fertility. Chichester, UK: Wiley/UK: TSBF and Sayce.

    Google Scholar 

  • Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., and Wong, M.H., 2005, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155-166.

    Google Scholar 

  • Xavier, L.J.C., and Germida, J.J., 1997, Growth response of lentil and wheat at Glomus clarum NT4 over a range of P levels in a Saskatchewan soil containing indigenous AM fungi. Mycorrhiza 7: 3-8.

    Google Scholar 

  • Yedidia, I., Benhamou, N., and Chet, I., 1999, Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65: 1061-1070.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Siddiqui, Z.A., Pichtel, J. (2008). Mycorrhizae: An Overview. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_1

Download citation

Publish with us

Policies and ethics