Skip to main content

Genetics, Immunology and biomarkers in clinical practice: do they assist in clinical management?

  • Conference paper
  • 628 Accesses

Part of the book series: Falk Symposium ((FASS,volume 160))

Abstract

In recent decades there has been a change in the epidemiology of inflammatory bowel diseases (IBD) in North America, as well as Western, and some Eastern European countries13. Both Crohn’s disease (CD) and ulcerative colitis (UC) possibly stem from common mechanisms, while the exact aetiology remains unknown4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farrokhyar F, Swarbrick ET, Irvine EJ. A critical review of epidemiological studies in inflammatory bowel disease. Scand J Gastroenterol. 2001;36:2–15.

    Article  PubMed  CAS  Google Scholar 

  2. Lakatos L, Mester G, Erdelyi Z et al. Striking elevation in the incidence and prevalence of inflammatory bowel disease in a province of Western Hungary between 1977–2001. World J Gastroenterol. 2004;10:404–9.

    PubMed  Google Scholar 

  3. Lakatos L, Lakatos PL. Is the incidence and prevalence of inflammatory bowel diseases increasing in Eastern Europe? Postgrad Med J. 2006;82:332–7.

    Article  PubMed  CAS  Google Scholar 

  4. Hugot JP. Inflammatory bowel disease: causes and consequences. Best Pract Res Clin Gastroenterol. 2004;18:447–9.

    Article  PubMed  Google Scholar 

  5. Lakatos PL, Fischer S, Lakatos L, Gal I, Papp J. Current concept on the pathogenesis of IBD: crosstalk between genetic and microbial factors. Pathogenic bacteria, altered bacterial sensing or changes in mucosal integrity take toll? World J Gastroenterol. 2006;12:1829–40.

    PubMed  CAS  Google Scholar 

  6. Lakatos L, Pandur T, David G et al. Association of extraintestinal manifestations of inflammatory bowel disease (IBD) in a province of Western Hungary with disease phenotype: results of a 25-year follow-up study. World J Gastroenterol. 2003;9:2300–7.

    PubMed  Google Scholar 

  7. Vermeire S. Review article: Genetic susceptibility and application of genetic testing in clinical management of inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(Suppl. 3):2–10.

    Article  PubMed  CAS  Google Scholar 

  8. Papp M, Norman GL, Altorjay I, Lakatos PL. Utility of serological markers in inflammatory bowel diseases: Gadget or magic? World J Gastroenterol. 2007;13:2028–36.

    PubMed  Google Scholar 

  9. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  PubMed  CAS  Google Scholar 

  10. Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357:1925–8.

    Article  PubMed  CAS  Google Scholar 

  11. Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps, Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 2003;5:581–92.

    Article  PubMed  CAS  Google Scholar 

  12. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi KS, Chamaillard M, Ogura Y et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–4.

    Article  PubMed  CAS  Google Scholar 

  14. Linde K, Boor PP, Houwing-Duistermaat JJ, Kuipers EJ, Wilson JH, de Rooij FW. CARD15 and Crohn’s disease: healthy homozygous carriers of the 3020insC frameshift mutation. Am J Gastroenterol. 2003;98:613–17.

    Article  PubMed  Google Scholar 

  15. Abreu MT, Taylor KD, Lin YC et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123:679–88.

    Article  PubMed  CAS  Google Scholar 

  16. Heresbach D, Giequel-Douabin V, Birebent B et al. NOD2/CARD15 gene polymorphisms in Crohn’s disease: a genotype-phenotype analysis. Eur J Gastroenterol Hepatol. 2004;16:55–62.

    Article  PubMed  CAS  Google Scholar 

  17. Lesage S, Zouali H, Cezard JP et al. CARD/15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70:845–57.

    Article  PubMed  CAS  Google Scholar 

  18. Lakatos PL, Lakatos L, Szalay F et al.; Hungarian IBD Study Group, Mozsik G, Ferenci P. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn disease: phenotype-genotype correlations. World J Gastroenterol. 2005;11:1489–95.

    PubMed  CAS  Google Scholar 

  19. Guo QS, Xia B, Jiang Y, Qu Y, Li J. NOD2 3020insC frameshift mutation is not associated with inflammatory bowel disease in Chinese patients of Han nationality. World J Gastroenterol. 2004;10:1069–71.

    PubMed  CAS  Google Scholar 

  20. Inoue N, Tamura K, Kinouchi Y et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology. 2002;123:86–91.

    Article  PubMed  CAS  Google Scholar 

  21. Medici V, Mascheretti S, Croucher PJ et al. Extreme heterogeneity in CARD15 and DLG5 Crohn disease-associated polymorphisms between German and Norwegian populations. Eur J Hum Genet. 2006;14:459–68.

    Article  PubMed  CAS  Google Scholar 

  22. Hugot JP, Zaccaria I, Cavanaugh J et al. for the IBD International Genetics Consortium. Prevalence of CARD15/NOD2 mutations in caucasian healthy people. Am J Gastroenterol. 2007;102:1259–67.

    Article  PubMed  CAS  Google Scholar 

  23. Ahmad T, Armuzzi A, Bunce M et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology. 2002;122:854–66.

    Article  PubMed  CAS  Google Scholar 

  24. Brant SR, Picco MF, Achkar JP et al. Defining complex contributions of NOD2/CARD15 gene mutations age at onset and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis. 2003;9:281–9.

    Article  PubMed  Google Scholar 

  25. McGovern DP, Hysi P, Ahmad T et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005;14:1245–50.

    Article  PubMed  CAS  Google Scholar 

  26. Zouali H, Lesage S, Merlin F et al. CARD4/NOD1 is not involved in inflammatory bowel disease. Gut. 2003;52:71–4.

    Article  PubMed  CAS  Google Scholar 

  27. Franchimoat D, Vermeire S, El Housni H et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–92.

    Article  CAS  Google Scholar 

  28. Campieri M, Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut. 2001;48:132–5.

    Article  PubMed  CAS  Google Scholar 

  29. Boone DL, Ma A. Connecting the dots from Toll-like receptors to innate immune cells and inflammatory bowel disease. J Clin Invest. 2003;111:1284–6.

    PubMed  CAS  Google Scholar 

  30. Cario E, Podosky DK. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68:7010–17.

    Article  PubMed  CAS  Google Scholar 

  31. Okayama N, Fujimura K, Suehiro Y et al. Simple genotype analysis of the Asp299Gly polymorphism of the Toll-like receptor-4 gene that is associated with lipopolysaccharide hyporesponsiveness. J Clin Lab Anal. 2002;16:56–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gazouli M, Mantzaris G, Kotsinas A et al. Association between polymorphisms in the toll-like receptor4 CD14 and CARD15/NOD2 and inflammatory bowel disease in Greek population. World J Gastroenterol. 2005;11:681–5.

    PubMed  CAS  Google Scholar 

  33. Brand S, Staudinger T, Schnitzler F et al. The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn’s disease. Inflamm Bowel Dis. 2005;11:645–52.

    Article  PubMed  Google Scholar 

  34. Oostenbrug LE, Drenth JP, de Jong DJ et al. Association between toll-like receptor4 and inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:567–75.

    Article  PubMed  Google Scholar 

  35. Pierik M, Joossens S, Van Steen K et al. Toll-like receptor-1-2 and-6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12:1–8.

    Article  PubMed  Google Scholar 

  36. Klein W, Tromm A, Griga T et al. A polymorphism in the CD14 gene is associated with Crohn disease. Scand J Gastroenterol. 2002;37:189–91.

    Article  PubMed  CAS  Google Scholar 

  37. Obana N, Takahashi S, Kinouchi Y et al. Ulcerative colitis is associated with promoter polymorphism of lipopolysaccharide receptor gene CD14. Scand J Gastroenterol. 2002;37:699–704.

    Article  PubMed  CAS  Google Scholar 

  38. Peters KE, O’Callaghan NJ, Cavanaugh JA. Lack of association of the CD14 promoter polymorphism — 159C/T with Caucasian inflammatory bowel disease. Scand J Gastroenterol. 2005;40:194–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yabuuchi H, Tamai I, Nezu JI et al. A novel membrane transporter OCTN1 mediates multispecific bidirectional and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289:768–73.

    PubMed  CAS  Google Scholar 

  40. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet. 2001;29:223–8.

    Article  PubMed  CAS  Google Scholar 

  41. Negoro K, McGovern DP, Kinouchi Y et al. Analysis of the IBD5 locus and potential gene-gene interactions in Crohn’s disease. Gut. 2003;52:541–6.

    Article  PubMed  CAS  Google Scholar 

  42. Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004;36:471–5.

    Article  PubMed  CAS  Google Scholar 

  43. Torok HP, Glas J, Tonenchi L et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut. 2005;54:1421–7.

    Article  PubMed  CAS  Google Scholar 

  44. Tosa M, Negoro K, Kinouchi Y et al. Lack of association between IBD5 and Crohn’s disease in Japanese patients demonstrates population-specific differences in inflammatory bowel disease. Scand J Gastroenterol. 2006;41:48–53.

    Article  PubMed  CAS  Google Scholar 

  45. Newman B, Gu X, Wintle R et al. A risk haplotype in the solute carrier family 22A4/22A5 gene cluster influences phenotypic expression of Crohn’s disease. Gastroenterology. 2005;128:260–9.

    Article  PubMed  CAS  Google Scholar 

  46. Vermeire S, Pierik M, Hlavaty T et al. Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. Gastroenterology. 2005;129:1845–53.

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura H, Sudo T, Tsuiki H et al. Identification of a novel human homolog of the Drosophila dlg P-dlg specifically expressed in the gland tissues and interacting with p55. FEBS Lett. 1998;433:63–7.

    Article  PubMed  CAS  Google Scholar 

  48. Stoll M, Corneliussen B, Costello CM et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36:476–80.

    Article  PubMed  CAS  Google Scholar 

  49. Daly MJ, Pearce AV, Farwell L et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur J Hum Genet. 2005;13:835–9.

    Article  PubMed  CAS  Google Scholar 

  50. Noble CL, Nimmo ER, Drummond H, Smith L, Arnott ID, Satsangi J. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Gut. 2005;54:1416–20.

    Article  PubMed  CAS  Google Scholar 

  51. Lakatos PL, Fischer S, Claes K et al. Hungarian IBD Study Group, Vermeire S, Lakatos L. DLG5 R30Q is not associated with inflammatory bowel disease in Hungarian IBD patients but predicts clinical response to steroids in Crohn’s disease. Inflamm Bowel Dis. 2006;12:362–8.

    Article  PubMed  Google Scholar 

  52. Nemetz A, Kope A, Molnar T et al. Significant differences in the interleukin-1 beta and interleukin-1 receptor antagonist gene polymorphisms in Hungarian population with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:175–9.

    Article  PubMed  CAS  Google Scholar 

  53. Carter MJ, di Giovine FS, Jones S et al. Association of the interleukin 1 receptor antagonist gene with ulcerative colitis in Northern European Caucasians. Gut. 2001;48:461–7.

    Article  PubMed  CAS  Google Scholar 

  54. Craggs A, West S, Curtis A et al. Absence of genetic association between IL-1RN and IL-1B gene polymorphisms in ulcerative colitis and Crohn disease in multiple populations from northeast England. Scand J Gastroenterol. 2001;36:1173–8.

    Article  PubMed  CAS  Google Scholar 

  55. Plevy SE, Targan SR, Yang H, Fernandez D, Rotter JI, Toyoda H. Tumor necrosis factor microsatellites define a Crohn’s disease associated haplotype on chromosome 6. Gastroenterology. 1996;110:1053–60.

    Article  PubMed  CAS  Google Scholar 

  56. Waschke KA, Villani AC, Vermeire S et al. Tumor necrosis factor receptor gene polymorphisms in Crohn’s disease: association with clinical phenotypes. Am J Gastroenterol. 2005;100:1126–33.

    Article  PubMed  CAS  Google Scholar 

  57. Yamazaki K, McGovern D, Ragoussis J et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14:3499–506.

    Article  PubMed  CAS  Google Scholar 

  58. Brant SR, Panhuysen CI, Nicolae D et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet. 2003;73:1282–92.

    Article  PubMed  CAS  Google Scholar 

  59. Schwab M, Schaeffeler E, Marx C et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology. 2003;124:26–33.

    Article  PubMed  CAS  Google Scholar 

  60. Ho GT, Nimmo ER, Tenesa A et al. Allelic variations of the multidrug resistance gene determine susceptibility and disease behaviour in ulcerative colitis. Gastroenterology. 2005;128:288–96.

    Article  PubMed  CAS  Google Scholar 

  61. Ho GT, Soranzo N, Nimmo ER et al. ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene-wide haplotype tagging approach. Hum Mol Genet. 2006;15:797–805.

    Article  PubMed  CAS  Google Scholar 

  62. Urcelay E, Mendoza JL, Martin MC et al. MDR1 gene: susceptibility in Spanish Crohn’s disease and ulcerative colitis patients. Inflamm Bowel Dis. 2006;12:33–7.

    Article  PubMed  Google Scholar 

  63. Fischer S, Lakatos PL, Lakatos L et al. The ATP-binding cassette transporter ABCG2 (BCRP) and ABCB1 (MDR1) variants are not associated with disease susceptibility and disease phenotype in Hungarian patients with inflammatory bowel diseases. Scand J Gastroenterol. 2007;42:726–33.

    Article  PubMed  CAS  Google Scholar 

  64. Hampe J, Franke A, Rosenstiel P et al. A genome wide association study of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    Article  PubMed  CAS  Google Scholar 

  65. Schmid D, Dengjel J, Schoor O, Stevanovic S, Munz C. Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med. 2006;84:194–202.

    Article  PubMed  CAS  Google Scholar 

  66. Prescott NJ, Fisher SA, Franke A et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132:1665–71.

    Article  PubMed  CAS  Google Scholar 

  67. Cummings JR, Cooney R, Pathan S et al. Confirmation of the role of ATG1611 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis. 2007; April 23 (Epub, ahead of print).

    Google Scholar 

  68. Parkes M, Barrett JC, Prescott NJ et al.; the Wellcome Trust Case Control Consortium. Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007; June 6 (Epub ahead of print).

    Google Scholar 

  69. Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–63.

    Article  PubMed  CAS  Google Scholar 

  70. Tremelling M, Cummings F, Fisher SA et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology. 2007;132:1657–64.

    Article  PubMed  CAS  Google Scholar 

  71. Fraser Cummings JR, Ahmad T, Geremia A et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007; May 16 (Epub ahead of print).

    Google Scholar 

  72. Krynetski EY, Krynetskaia NF, Yanishevski Y, Evans WE. Methylation of mercaptopurine. thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol Pharmacol. 1995;47:1141–7.

    PubMed  CAS  Google Scholar 

  73. Krynetski EY, Evans WE. Genetic polymorphism of thiopurine S-methyltransferase molecular mechanisms and clinical importance. Pharmacology. 2000;61:136–46.

    Article  PubMed  CAS  Google Scholar 

  74. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32:651–62.

    PubMed  CAS  Google Scholar 

  75. Colombel JF, Ferrari N, Debuysere H et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118:1025–30.

    Article  PubMed  CAS  Google Scholar 

  76. Saxon A, Shanahan F, Landers C, Ganz T, Targan S. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86:202–10.

    Article  PubMed  CAS  Google Scholar 

  77. Rump JA, Scholmerich J, Gross V et al. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn’s disease. Immunobiology. 1990;181:406–13.

    PubMed  CAS  Google Scholar 

  78. Bossuyt X. Serologic markers in inflammatory bowel disease. Clin Chem. 2006;52:171–81.

    Article  PubMed  CAS  Google Scholar 

  79. Terjung B, Worman HJ. Anti-neutrophil antibodies in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol. 2001;15:629–42.

    Article  PubMed  CAS  Google Scholar 

  80. Terjung B, Bogsch F, Klein R et al. Diagnostic accuracy of atypical p-ANCA in autoimmune hepatitis using ROC-and multivariate regression analysis. Eur J Med Res. 2004;9:439–48.

    PubMed  CAS  Google Scholar 

  81. Vidrich A, Lee J, James E, Cobb L, Targan S. Segregation of pANCA antigenic recognition by DNase treatment of neutrophils: ulcerative colitis, type 1 autoimmune hepatitis, and primary sclerosing cholangitis. J Clin Immunol. 1995;15:293–9.

    Article  PubMed  CAS  Google Scholar 

  82. Main J, McKenzie H, Yeaman GR et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. Br Med J. 1988;297:1105–6.

    Article  CAS  Google Scholar 

  83. Quinton JF, Sendid B, Reumaux D et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42:788–91.

    Article  PubMed  CAS  Google Scholar 

  84. Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. 2001;96:730–4.

    Article  PubMed  CAS  Google Scholar 

  85. Papp M, Istvan Altorjay I, Norman GL et al. Sero-reactivity to microbial components in Crohn’s disease is associated with ileal involvement, non-inflammatory disease behaviour and NOD2/CARD15 genotype, but not with risk for surgery in a Hungarian cohort of IBD patient? Inflamm Bowel Dis. 2007;13:984–92.

    Article  PubMed  Google Scholar 

  86. Norman GL. Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease. Clin Applied Immunol Rev. 2001;2:45–63.

    Article  Google Scholar 

  87. Vermeire S, Joossens S, Peeters M et al. Comparative study of ASCA (anti-Saccharomyces cerevisiae antibody) assays in inflammatory bowel disease. Gastroenterology. 2001;120:827–33.

    Article  PubMed  CAS  Google Scholar 

  88. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidence by Crohn’s disease-associated immune responses to auto-and microbial antigens. Gastroenterology. 2002;123:689–99.

    Article  PubMed  CAS  Google Scholar 

  89. Zholudev A, Zurakowski D, Young W, Leichtner A, Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am J Gastroenterol. 2004;99:2235–41.

    Article  PubMed  Google Scholar 

  90. Sutton CL, Kim J, Yamane A et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology. 2000;119:23–31.

    Article  PubMed  CAS  Google Scholar 

  91. Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D, Braun J. Pseudomonas fluorescens encodes the Crohn’s disease-associated 12 sequence and T-cell superantigen. Infect Immun. 2002;70:6567–75.

    Article  PubMed  CAS  Google Scholar 

  92. Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest. 2004;113:1296–306.

    PubMed  CAS  Google Scholar 

  93. Targan SR, Landers CJ, Yang H et al. Antibodies to CBirl flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128:2020–8.

    Article  PubMed  CAS  Google Scholar 

  94. Lawrance IC, Hall A, Leong R, Pearce C, Murray K. A comparative study of goblet cell and pancreatic exocine, autoantibodies combined with ASCA and pANCA in Chinese and Caucasian patients with IBD. Inflamm Bowel Dis. 2005;11:890–7.

    Article  PubMed  Google Scholar 

  95. Stocker W, Otte M, Ulrich S et al. Autoimmunity to pancreatic juice in Crohn’s disease. Results of an autoantibody screening in patients with chronic inflammatory bowel disease. Scand J Gastroenterol Suppl. 1987;139:41–52.

    Article  PubMed  CAS  Google Scholar 

  96. Dotan I, Fishman S, Dgani Y et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–78.

    Article  PubMed  CAS  Google Scholar 

  97. Ferrante M, Henckaerts L, Joossens M et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut. 2007; Apr 24 (Epub ahead of print).

    Google Scholar 

  98. Czaja AJ, Shums Z, Donaldson PT, Norman GL. Frequency and significance of antibodies to Saccharomyces cerevisiae inautoimmune hepatitis. Dig Dis Sci. 2004;49:611–18.

    Article  PubMed  CAS  Google Scholar 

  99. Reddy KR, Colombel JF, Poulain D, Krawitt EL. Anti-Saccharomyces cerevisiae antibodies in autoimmune liver disease. Am J Gastroenterol. 2001;96:252–3.

    Article  PubMed  CAS  Google Scholar 

  100. Vernier G, Sendid B, Poulain D, Colombel JF. Relevance of serologic studies in inflammatory bowel disease. Curr Gastroenterol Rep. 2004;6:482–7.

    Article  PubMed  Google Scholar 

  101. Linskens RK, Mallant-Hent RC, Groothuismink ZM et al. Evaluation of serological markers to differentiate between ulcerative colitis and Crohn’s disease: pANCA, ASCA and agglutinating antibodies to anaerobiccoccoid rods. Eur J Gastroenterol Hepatol. 2002;14:1013–18.

    Article  PubMed  CAS  Google Scholar 

  102. Koutroubakis IE, Petinaki E, Mouzas IA et al. Anti-Saccharomyces cerevisiae mannan antibodies and antineutrophil cytoplasmic autoantibodies in Greek patients with inflammatory bowel disease. Am J Gastroenterol. 2001;96:449–54.

    PubMed  CAS  Google Scholar 

  103. Seibold F, Slametschka D, Gregor M, Weber P. Neutrophil autoantibodies: a genetic marker in primary sclerosing cholangitis and ulcerative colitis. Gastroenterology. 1994;107:532–6.

    PubMed  CAS  Google Scholar 

  104. Shanahan F, Duerr RH, Rotter JI et al. Neutrophil autoantibodies in ulcerative colitis: familial aggregation and genetic heterogeneity. Gastroenterology. 1992;103:456–61.

    PubMed  CAS  Google Scholar 

  105. Lee JC, Lennard-Jones JE, Cambridge G. Antineutrophil antibodies in familial inflammatory bowel disease. Gastroenterology. 1995;108:428–33.

    Article  PubMed  CAS  Google Scholar 

  106. Folwaczny C, Noehl N, Endres SP, Loeschke K, Fricke H. Antineutrophil and pancreatic autoantibodies in first-degree relatives of patients with inflammatory bowel disease. Scand J Gastroenterol. 1998;33:523–8.

    Article  PubMed  CAS  Google Scholar 

  107. Sendid B, Quinton JF, Charrier G et al. Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn’s disease. Am J Gastroenterol. 1998;93:1306–10.

    Article  PubMed  CAS  Google Scholar 

  108. Seibold F, Stich O, Hufnagl R, Kamil S, Scheurlen M. Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease: a family study. Scand J Gastroenterol. 2001;36:196–201.

    Article  PubMed  CAS  Google Scholar 

  109. Israeli E, Grotto I, Gilburd B et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54:1232–6.

    Article  PubMed  CAS  Google Scholar 

  110. Joossens S, Reinisch W, Vermeire S et al. The value of serologic markers in indeterminate colitis: a prospective follow-up study. Gastroenterology. 2002;122:1242–7.

    Article  PubMed  Google Scholar 

  111. Joossens S, Colombel JF, Landers C et al. Anti-outer membrane of porin C and anti-12 antibodies in indeterminate colitis. Gut. 2006;55:1667–9.

    Article  PubMed  CAS  Google Scholar 

  112. Lichtenstein GR, Carroll S, Eggleston L, Neri B, Lois A. Validation of a computer-aided analysis of inflammatory bowel disese (IBD) serologic markers: a novel method to improve the accuracy of predicting IBD, Crohn’s disease (CD), and ulcerative colitis (UC). Gastroenterology. 2007;132:A175 (S1106).

    Google Scholar 

  113. Sandborn WJ, Landers CJ, Tremaine WJ, Targan SR. Association of antineutrophil cytoplasmic antibodies with resistance to treatment of left-sided ulcerative colitis: results of a pilot study. Mayo Clin Proc. 1996;71:431–6.

    Article  PubMed  CAS  Google Scholar 

  114. Sandborn WJ, Landers CJ, Tremaine WJ, Targan SR. Antineutrophil cytoplasmic antibody correlates with chronic pouchitis after ileal pouch-anal anastomosis. Am J Gastroenterol. 1995;90:740–7.

    PubMed  CAS  Google Scholar 

  115. Vasiliauskas EA, Plevy SE, Landers CJ et al. Perinuclear antineutrophil cytoplasmic antibodies in patients with Crohn’s disease define a clinical subgroup. Gastroenterology. 1996;110:1810–19.

    Article  PubMed  CAS  Google Scholar 

  116. Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut. 2000;47:487–96.

    Article  PubMed  CAS  Google Scholar 

  117. Klebl FH, Bataille F, Bertea CR et al. Association of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces cerevisiae antibodies with Vienna classification subtypes of Crohn’s disease. Inflamm Bowel Dis. 2003;9:302–7.

    Article  PubMed  Google Scholar 

  118. Vermeire S, Peeters M, Vlietinck R et al. Anti-Saccharomyces cerevisiae antibodies (ASCA), phenotypes of IBD, and intestinal permeability: a study in IBD families. Inflamm Bowel Dis. 2001;7:8–15.

    Article  PubMed  CAS  Google Scholar 

  119. Walker LJ, Aldhous MC, Drummond HE et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clin Exp Immunol. 2004;135:490–6.

    Article  PubMed  CAS  Google Scholar 

  120. Mow WS, Vasiliauskas EA, Lin YC et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology. 2004;126:414–24.

    Article  PubMed  CAS  Google Scholar 

  121. Desir B, Amre DK, Lu SE et al. Utility of serum antibodies in determining clinical course in pediatric Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2:139–46.

    Article  PubMed  CAS  Google Scholar 

  122. Dubinsky MC, Lin YC, Dutridge D et al.: Western Regional Pediatric IBD Research Alliance. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7.

    Article  PubMed  Google Scholar 

  123. Sandborn WJ, Landers CJ, Tremaine WJ, Targan SR. Association of antineutrophil cytoplasmic antibodies with resistance to treatment of left-sided ulcerative colitis: results of a pilot study. Mayo Clin Proc. 1996;71:431–6.

    Article  PubMed  CAS  Google Scholar 

  124. Arnott ID, Landers CJ, Nimmo EJ et al. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol. 2004;99:2376–84.

    Article  PubMed  Google Scholar 

  125. Oshitani N, Hato F, Matsumoto T et al. Decreased anti-Saccharomyces cerevisiae antibody titer by mesalazine in patients with Crohn’s disease. J Gastroenterol Hepatol. 2000;15:1400–3.

    Article  PubMed  CAS  Google Scholar 

  126. Teml A, Kratzer V, Schneider B et al. Anti-Saccharomyces cerevisiae antibodies: a stable marker for Crohn’s disease during steroid and 5-aminosalicylic acid treatment. Am J Gastroenterol. 2003;98:2226–31.

    Article  PubMed  CAS  Google Scholar 

  127. Esters N, Vermeire S, Joossens S et al.; Belgian Group of Infliximab Expanded Access Program in Crohn’s Disease. Serological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn’s disease. Am J Gastroenterol. 2002;97:1458–62.

    Article  PubMed  CAS  Google Scholar 

  128. Mow WS, Landers CJ, Steinhart AH et al. High-level serum antibodies to bacterial antigens are associated with antibiotic-induced clinical remission in Crohn’s disease: a pilot study. Dig Dis Sci. 2004;49:1280–6.

    Article  PubMed  CAS  Google Scholar 

  129. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54.

    Article  PubMed  CAS  Google Scholar 

  130. Tillet WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of the pneumococcus. J Exp Med. 1930;52:561–71.

    Article  Google Scholar 

  131. Tall AR. C-reactive protein reassessed. N Engl J Med. 2004;350:1450–2.

    Article  PubMed  CAS  Google Scholar 

  132. Ballou SP, Kushner I. C-reactive protein and the acute phase response. Adv Intern Med. 1992;37:313–36.

    PubMed  CAS  Google Scholar 

  133. Beattie RM, Walker-Smith JA, Murch SH. Indications for investigation of chronic gastrointestinal symptoms. Arch Dis Child. 1995;73:354–5.

    Article  PubMed  CAS  Google Scholar 

  134. Saverymuttu SH, Hodgson HJ, Chadwick VS, Pepys MB. Differing acute phase responses in Crohn’s disease and ulcerative colitis. Gut. 1986;27:809–13.

    Article  PubMed  CAS  Google Scholar 

  135. Willot S, Vermeire S, Ohresser M et al. No association between C-reactive protein gene polymorphisms and decrease of C-reactive protein serum concentration after infliximab treatment in Crohn’s disease. Pharmacogenet Genom. 2006;16:37–42.

    Article  CAS  Google Scholar 

  136. Meuwis MA, Marianne Fillet M, Geurts P et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem Pharmacol. 2007;73:1422–33.

    Article  PubMed  CAS  Google Scholar 

  137. Tibble J, Teahon K, Thjodleifsson B et al. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut. 2000;47:506–13.

    Article  PubMed  CAS  Google Scholar 

  138. Sugi K, Saitoh O, Hirata I, Katsu K. Fecal lactoferrin as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophilderived proteins. Am J Gastroenterol. 1996;91:927–34.

    PubMed  CAS  Google Scholar 

  139. Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:50–4.

    Article  PubMed  CAS  Google Scholar 

  140. Foell D, Kucharzik T, Kraft M et al. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52:847–53.

    Article  PubMed  CAS  Google Scholar 

  141. Walker TR, Land ML, Kartashov A et al. Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44:414–22.

    Article  PubMed  CAS  Google Scholar 

  142. Shine B, Berghouse L, Jones JE, Landon J. C-reactive protein as an aid in the differentiation of functional and inflammatory bowel disorders. Clin Chim Acta. 1985;148:105–9.

    Article  PubMed  CAS  Google Scholar 

  143. Poullis AP, Zar S, Sundaram KK et al. A new, highly sensitive assay for Creactive protein can aid the differentiation of inflammatory bowel disorders from constipation-and diarrhoea-predominant functional bowel disorders. Eur J Gastroenterol Hepatol. 2002;14:409–12.

    Article  PubMed  CAS  Google Scholar 

  144. Fagerberg UL, Loof L, Myrdal U, Hansson LO, Finkel Y. Colorectal inflammation is well predicted by fecal calprotectin in children with gastrointestinal symptoms. J Pediatr Gastroenterol Nutr. 2005;40:450–5.

    Article  PubMed  Google Scholar 

  145. Thjodleifsson B, Sigthorsson G, Cariglia N et al. Subclinical intestinal inflammation: an inherited abnormality in Crohn’s disease relatives? Gastroenterology. 2003;124:1728–37.

    Article  PubMed  Google Scholar 

  146. von Roon AC, Karamountzos L, Purkayastha S et al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–13.

    Article  CAS  Google Scholar 

  147. Danesh J, Wheeler JG, Hirschfield GM et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.

    Article  PubMed  CAS  Google Scholar 

  148. Bataille R, Boccadoro M, Klein B, Durie B, Pileri A. C-reactive protein and beta-2 microglobulin produce a simple and powerful myeloma staging system. Blood. 1992;80:733–7.

    PubMed  CAS  Google Scholar 

  149. Tromm A, Tromm CD, Huppe D, Schwegler U, Krieg M, May B. Evaluation of different laboratory tests and activity indices reflecting the inflammatory activity of Crohn’s disease. Scand J Gastroenterol. 1992;27:774–8.

    Article  PubMed  CAS  Google Scholar 

  150. Sachar DB, Smith H, Chan S, Cohen LB, Lichtiger S, Messer J. Erythrocytic sedimentation rate as a measure of clinical activity in inflammatory bowel disease. J Clin Gastroenterol. 1986;8:647–50.

    Article  PubMed  CAS  Google Scholar 

  151. Fagan EA, Dyck RF, Maton PN et al. Serum levels of C-reactive protein in Crohn’s disease and ulcerative colitis. Eur J Clin Invest. 1982;12:351–9.

    Article  PubMed  CAS  Google Scholar 

  152. Solem CA, Loftus EV Jr, Tremaine WJ, Harmsen WS, Zinsmeister AR, Sandborn WJ. Correlation of C-reactive protein (CRP) with clinical, radiographic, and endoscopic activity in inflammatory bowel disease (IBD). Inflamm Bowel Dis. 2005;11:707–12.

    Article  PubMed  Google Scholar 

  153. Florin TH, Paterson EW, Fowler EV, Radford-Smith GL. Clinically active Crohn’s disease in the presence of a low C-reactive protein. Scand J Gastroenterol. 2006;41:306–11.

    Article  PubMed  CAS  Google Scholar 

  154. Brignola C, Campieri M, Bazzocchi G, Farruggia P, Tragnone A, Lanfranchi GA. A laboratory index for predicting relapse in asymptomatic patients with Crohn’s disease. Gastroenterology. 1986;91:1490–4.

    PubMed  CAS  Google Scholar 

  155. Boirivant M, Leoni M, Tariciotti D, Fais S, Squarcia O, Pallone F. The clinical significance of serum C reactive protein levels in Crohn’s disease. Results of a prospective longitudinal study. J Clin Gastroenterol. 1988;10:401–5.

    Article  PubMed  CAS  Google Scholar 

  156. Consigny Y, Modigliani R, Colombel JF, Dupas JL, Lemann M, Mary JY (GETAID). A simple biological score for predicting low risk of short-term relapse in Crohn’s disease. Inflamm Bowel Dis. 2006;12:551–7.

    Article  PubMed  Google Scholar 

  157. Travis SP, Farrant JM, Ricketts C et al. Predicting outcome in severe ulcerative colitis. Gut. 1996;38:905–10.

    Article  PubMed  CAS  Google Scholar 

  158. Zilberman L, Maharshak N, Arbel Y et al. Correlated expression of high-sensitivity C-reactive protein in relation to disease activity in inflammatory bowel disease: lack of differences between Crohn’s disease and ulcerative colitis. Digestion. 2006;73:205–9.

    Article  PubMed  CAS  Google Scholar 

  159. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22.

    Article  PubMed  CAS  Google Scholar 

  160. Costa F, Mumolo MG, Ceccarelli L et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–8.

    Article  PubMed  CAS  Google Scholar 

  161. D’Inca R, Dal Pont E, Di Leo V et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22:429–37.

    Article  PubMed  Google Scholar 

  162. Roseth AG, Aadland E, Grzyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scand J Gastroenterol. 2004;39:1017–20.

    Article  PubMed  CAS  Google Scholar 

  163. Louis E, Vermeire S, Rutgeerts P et al. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with-308 TNF gene polymorphism. Scand J Gastroenterol. 2002;37:818–24.

    Article  PubMed  CAS  Google Scholar 

  164. Schreiber S, Rutgeerts P, Fedorak RN et al. CDP870 Crohn’s Disease Study Group. CDP870 Crohn’s Disease Study Group. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18.

    Article  PubMed  CAS  Google Scholar 

  165. Lémann M, Mary JY, Colombel JF et al. A randomized, double-blind, controlled withdrawal trial in Crohn’s disease patients in long-term remission on azathioprine. Gastroenterology. 2005;128:1812–18.

    Article  PubMed  CAS  Google Scholar 

  166. Orlando A, Modesto I, Castiglione F et al. The role of calprotectin in predicting endoscopic post-surgical recurrence in asymptomatic Crohn’s disease: a comparison with ultrasound. Eur Rev Med Pharmacol Sci. 2006;10:17–22.

    PubMed  CAS  Google Scholar 

  167. Scarpa M, D’Inca R, Basso D et al. Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn’s disease. Dis Colon Rectum. 2007;50:861–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer and Falk Foundation e.V.

About this paper

Cite this paper

Lakatos, P.L. (2008). Genetics, Immunology and biomarkers in clinical practice: do they assist in clinical management?. In: Ferkolj, I., Gangl, A., Galle, P.R., Vucelic, B. (eds) Pathogenesis and Clinical Practice in Gastroenterology. Falk Symposium, vol 160. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8767-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8767-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8766-0

  • Online ISBN: 978-1-4020-8767-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics