Advertisement

The Origin and Evolution of Viruses

Conference paper
  • 651 Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The lecture covers three main topics: (i) Viruses: properties, place in the living world, and possible origin; (ii) Molecular basis of viral variability and evolution; and (iii) Evolution of viral pathogenicity and emerging viral infections.

Keywords

Selfish genetic elements replication transcription mutation recombination plasmids pathogenicity fibroma/myxoma virus influenza virus SARS-coronavirus human immunodeficiency virus 

References

  1. Agol, V. I., 1974, Towards the system of viruses, Biosystems, 6:113–132.CrossRefGoogle Scholar
  2. Baltimore, D., 1971, Expression of animal virus genomes, Bacteriol. Rev., 35:235–241.Google Scholar
  3. Bamford, D. H., 2003, Do viruses form lineages across different domains of life? Res. Microbiol., 154:231–236.CrossRefGoogle Scholar
  4. Breitbart, M., and Rohwer, F., 2005, Here a virus, there a virus, everywhere the same virus? Trends Microbiol., 13:278–284.CrossRefGoogle Scholar
  5. Fenner, F., and Ratcliffe, F. N., 1965, Myxomatosis, Cambridge University Press, London and New York.Google Scholar
  6. Forterre, P., 2006, Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. U. S. A., 103:3669–3674.CrossRefADSGoogle Scholar
  7. Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C.M., Michael, S. F., Cummins, L. B., Arthur, L. O., Peeters, M., Shaw, G. M., Sharp, P. M., and Hahn, B. H., 1999, Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397:436–441.CrossRefADSGoogle Scholar
  8. Gmyl, A. P., Pilipenko, E. V., Maslova, S. V., Belov, G. A., and Agol, V. I., 1993, Functional and genetic plasticities of the poliovirus genome: Quasi-infectious RNAs modified in the 5′- untranslated region yield a variety of pseudorevertants. J. Virol., 67: 6309–6316.Google Scholar
  9. Gmyl, A. P., Belousov, E. V., Maslova, S. V., Khitrina, E. V., and Agol V. I., 1999, Nonreplicative RNA recombination in poliovirus. J. Virol., 73:8958–8965.Google Scholar
  10. Gmyl, A. P., Korshenko, S. A., Belousov, E. V., Khitrina, E. V., and Agol, V. I., 2003, Nonreplicative homologous RNA recombination: Promiscuous joining of RNA pieces? RNA, 9:1221–1231.CrossRefGoogle Scholar
  11. Heeney, J. L., Dalgleish, A. G., and Weiss, R. A., 2006, Origins of HIV and the evolution of resistance to AIDS. Science, 313:462–466.CrossRefADSGoogle Scholar
  12. Koonin, E. V., and Martin, W., 2005, On the origin of genomes and cells within inorganic compartments. Trends Genet., 21:647–654.CrossRefGoogle Scholar
  13. Koonin, E. V., Senkevich, T. G., and Dolja, V. V., 2006, The ancient virus world and evolution of cells, Biology Direct., 1:29.CrossRefGoogle Scholar
  14. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H., and Yuen, K. Y., 2005, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U. S. A., 102:14040–14045.CrossRefADSGoogle Scholar
  15. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., and Wang L.-E., 2005, Bats are natural reservoirs of SARS-like coronaviruses. Science, 310:676–679.CrossRefADSGoogle Scholar
  16. Pfeiffer, J. K., and Kirkegaard, K., 2003, A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity, Proc. Natl. Acad. Sci. U. S. A., 100:7289–7294.CrossRefADSGoogle Scholar
  17. Pfeiffer, J. K., and Kirkegaard, K., 2005, Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog., 1:e11.CrossRefGoogle Scholar
  18. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N., and Agol, V. I., 1992, Prokaryotic-like cis element in the cap-independent internal initiation of translation on picornavirus RNA. Cell, 68:119–131.CrossRefGoogle Scholar
  19. Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I., and Roos, R. P., 2001, Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO J., 20:6899–6908.CrossRefGoogle Scholar
  20. Suttle, C. A., 2005, Viruses in the sea. Nature, 437:356–361.CrossRefADSGoogle Scholar
  21. Tumpey, T. M., Basier, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P., and Garcia-Sastre, A., 2005, Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 310:77–80.CrossRefADSGoogle Scholar
  22. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E., and Andino, R., 2006, Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439:344–348.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.M. P. Chumakov Institute of Poliomyelitis & Viral EncephalitidesRussian Academy of Medical SciencesRussia
  2. 2.A. N. Belozersky Institute of Physical-Chemical BiologyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations