Skip to main content

Dynamical Genetic Regulation

  • Conference paper
  • 598 Accesses

Abstract

The development of new techniques to investigate quantitatively the expression of genes in the cell has shed light on a number of systems which display regular oscillations in protein concentration. In order to investigate the physics which controls such systems, one can make use of models based on rate equations. The models present in the literature suggest that important ingredients to describe correctly oscillations in protein expression are a feed–back loop, time delay and saturated binding. In this review we will discuss the physical aspects of the mechanism which is at the basis of the oscillations in gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haupt Y, Maya R, Kazaz A and Oren M (1997) Mdm2 promotes the rapid degradation of p53, Nature 387, 296–299.

    Article  ADS  Google Scholar 

  2. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K and Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop, Science 298, 840–843.

    Article  ADS  Google Scholar 

  3. Hoffmann A, Levchenko A, Scott M L and Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation, Science 298, 1241–1245.

    Article  ADS  Google Scholar 

  4. Barkai N and Leibler S (2000) Circadian clocks limited by noise, Science 403, 267–268.

    Google Scholar 

  5. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter R Y, Alon U and Margalit H (2004) Network motifs in integrated cellular networks of transcriptionregulation and proteinprotein interaction, Proc. Nad. Acad. Sci. USA 101, 5934–5939.

    Article  ADS  Google Scholar 

  6. Strogatz S (1994) Nonlinear Dynamics and Chaos (Addison-Wesley, Reading MA).

    Google Scholar 

  7. Thomas R (1981) Quantum noise, Springer Series in Synergetics 9, Ed. Gardiner, Springer, Berlin, pp. 180–193.

    Google Scholar 

  8. Gouzé J L (1998) Positive and negative circuits in dynamical systems, J. Biol. Syst. 6, 11–15.

    Article  MATH  Google Scholar 

  9. Bar-Or R L, Maya R, Segel L A, Levine A J and Oren M (2000) Generation of oscillations by the p53—Mdm2 feedback loop: a theoretical and experimental study, Proc. Nad. Acad. Sci. USA 97, 11250–11256.

    Article  ADS  Google Scholar 

  10. Schon O, Friedler A, Bycroft M, Freund S M V and Fersht A R (2002) Molecular mechanism of the interaction between MDM2 and p53, J. Mol Biol. 323, 491.

    Article  Google Scholar 

  11. Mallet-Paret J and Smith H L (1990) The Poincare-Bendixson theorem for monotone cyclic feedback systems, J. Dyn. Diff. Eq. 2, 367–421.

    Article  MATH  MathSciNet  Google Scholar 

  12. Mallet-Paret J and Sell G R (1996) Systems of delay differential equations I: Floquet multipliers and discrete Lyapunov functions, J. Differ. Eq. 125, 441–489.

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldbeter A et al. (2001) From simple to complex oscillatory behavior in metabolic and genetic control networks, Chaos 11, 247–260.

    Article  MATH  ADS  Google Scholar 

  14. Picksley S M and Lane D P (1993) The p53-Mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53? Bioessays 15, 689–690.

    Article  Google Scholar 

  15. Lahav G, Rosenfeld N, Sigal A, Geva—Zatorosky N, Levine A J, Elowitz M B and Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells, Nature Genetics 36, 147.

    Article  Google Scholar 

  16. Gottlieb T and Oren M (1996) p53 in growth control and neoplasia, Biochim. Biophys. Acta 1287, 77.

    Google Scholar 

  17. Tiana G, Jensen M H and Sneppen K (2002) Time delay as a key to apoptosis induction in the p53 network, Ear. Phys. J. B 29, 135–139.

    Article  ADS  Google Scholar 

  18. Neamtu M, Horhat R F and Opris D (2006) A dynamic p53-mdm2 model with delay kernel, arXiv preprint arXiv.math.DS/0601481.

    Google Scholar 

  19. Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J (1994) Molecular Biology of the Cell. Garland: Science, Taylor&Francis, New York.

    Google Scholar 

  20. Ribbeck K and Gorlich D (2001) Kinetic analysis of translocation through nuclear pore complexes, EMBO J. 20, 1320–1330.

    Article  Google Scholar 

  21. Greenblatt M S, Bennett W P, Hollstein M and Harris C C (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis, Cancer res. 54, 4855–4878.

    Google Scholar 

  22. Kageyama R, Ishibashi M, Takebayashi K and Tomita K (1997) bHLH transcription factors and mammalian deuronal differentiation, Int. J. Biochem. Cell Biol. 29, 1389.

    Article  Google Scholar 

  23. Jensen M H, Sneppen K and Tiana G (2003) Sustained oscillations and time delays in gene expression of protein Hesl, FEBS Lett. 541, 176–177.

    Article  Google Scholar 

  24. Pahl H L (1999) Activators and target genes of Rel/NF-kappaB transcription factors, Oncogene 18, 6853–6866.

    Article  Google Scholar 

  25. Nelson D E, Ihekwaba A E C, Elliott M, Johnson J R, Gibney C A, Foreman B E, Nelson G, See V, Horton C A, Spiller D G et al. (2004) Oscillations in NF-B signaling control the dynamics of gene expression, Science 306, 704.

    Article  ADS  Google Scholar 

  26. Krishna S, Jensen M H and Sneppen K (2006) Minimal model of spiky oscillations in NF-kB signaling, Proc. Nad. Acad. Sci. USA 103, 10840–10845.

    Article  ADS  Google Scholar 

  27. Bliss R D, Painter P R and Marr A G (1982) Role of feedback inhibition in stabilizing the classical operon, J. Theor. Biol. 97, 177–193.

    Article  Google Scholar 

  28. Goodwin B C (1965) Adv. Enzyme Regulation, ed. Weber, G. (Pergamon Press, Oxford) Vol. 3, pp. 425–438.

    Google Scholar 

  29. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Natl. Acad. Sci. (USA) 88, 9107–9111.

    Article  ADS  Google Scholar 

  30. Igoshin O A, Goldbeter A, Kaiser D and Oster G (2004) A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development, Proc. Natl. Acad. Sci. USA 101, 15760–15765.

    Article  ADS  Google Scholar 

  31. Jacquet H, Renault G, Lallet S, Mey J D and Goldbeter A (2003) Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae, J. Cell Biol. 161, 497–505.

    Article  Google Scholar 

  32. Leloup J C and Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock, Proc. Natl. Acad. Sci. USA 100, 7051–7056.

    Article  ADS  Google Scholar 

  33. Reidl J, Borowski P, Sensse A, Starke J, Zapotocky M and Eiswirth M (2005) Model of calcium oscillations due to negative feedback in olfactory cilia, Biophys. J. 90, 1147–1155.

    Article  Google Scholar 

  34. Goldbeter A, Dupont G and Berridge M (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation, Proc. Natl. Acad. Sci. USA 87, 1461–1465.

    Article  ADS  Google Scholar 

  35. Lahav G (2004) The strength of indecisiveness: oscillatory behavior for better cell fate determination, Science’s STKE pe55.

    Google Scholar 

  36. Ting A Y and Endy D (2002) Decoding NF-kB signaling, Science 298, 1189–1190.

    Article  Google Scholar 

  37. Barken D, Wang C J, Kearns J, Cheong R, Hoffmann A and Levchenko A (2005) Comment on “Oscillations in NF-kB Signaling Control the Dynamics of Gene Expression”, Science 308, 52a–52a.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogens H. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Jensen, M.H., Krishna, S., Sneppen, K., Tiana, G. (2008). Dynamical Genetic Regulation. In: Skjeltorp, A.T., Belushkin, A.V. (eds) Evolution from Cellular to Social Scales. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8761-5_5

Download citation

Publish with us

Policies and ethics