Skip to main content

Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions

  • Chapter
Partial Differential Equations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 16))

Summary

We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order (2m) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increases. We propose variants of these schemes constructed to optimize the CFL condition. The corresponding optimization problem is analyzed in detail and the analysis results in a specific numerical algorithm. The corresponding results are quite promising and suggest various conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Anné, P. Joly, and Q. H. Tran. Construction and analysis of higher order finite difference schemes for the 1D wave equation. Comput. Geosci., 4(3):207–249, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. M. Alford, K. R. Kelly, and Boore D. M. Accuracy of finite difference modeling of the acoustic wave equation. Geophysics, 39:834–842, 1974.

    Article  ADS  Google Scholar 

  3. J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization – Theoretical and Practical Aspects. Universitext. Springer Verlag, Berlin, 2nd edition, 2006.

    MATH  Google Scholar 

  4. S. Bellavia and B. Morini. An interior global method for nonlinear systems with simple bounds. Optim. Methods Softw., 20(4–5):453–474, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Carpentier, A. de La Bourdonnaye, and B. Larrouturou. On the derivation of the modified equation for the analysis of linear numerical methods. RAIRO Modél. Math. Anal. Numér., 31(4):459–470, 1997.

    MATH  Google Scholar 

  6. G. Cohen and S. Fauqueux. Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J. Sci. Comput., 26(3):864–884 (electronic), 2005.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, 1966.

    Google Scholar 

  8. G. Cohen and P. Joly. Construction analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal., 33(4):1266–1302, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. J. S. Chin-Joe-Kong, W. A. Mulder, and M. Van Veldhuizen. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. J. Engrg. Math., 35(4):405–426, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman. Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal., 38(6):2047–2078 (electronic), 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. C. Cohen. Higher-order numerical methods for transient wave equations. Scientific Computation. Springer-Verlag, Berlin, 2002.

    Google Scholar 

  12. M. A. Dablain. The application of high order differencing for the scalar wave equation. Geophysics, 51:54–56, 1986.

    Article  ADS  Google Scholar 

  13. P. Deuflhard. Newton Methods for Nonlinear Problems – Affine Invariance and Adaptative Algorithms. Number 35 in Computational Mathematics. Springer, Berlin, 2004.

    Google Scholar 

  14. S. Del Pino and H. Jourdren. Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics. C. R. Math. Acad. Sci. Paris, 342(6):441–446, 2006.

    MATH  MathSciNet  Google Scholar 

  15. L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. M2AN Math. Model. Numer. Anal., 39(6):1149–1176, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edition, 1996. Stiff and differential-algebraic problems.

    Google Scholar 

  17. J. S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys., 181(1):186–221, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. P. Joly. Variational methods for time-dependent wave propagation problems. In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pages 201–264. Springer, Berlin, 2003.

    Google Scholar 

  19. Ch. Kanzow. An active set-type Newton method for constrained nonlinear systems. In M.C. Ferris, O.L. Mangasarian, and J.S. Pang, editors, Complementarity: applications, algorithms and extensions, pages 179–200, Dordrecht, 2001. Kluwer Acad. Publ.

    Google Scholar 

  20. P. Lascaux and R. Théodor. Analyse Numérique Matricielle Appliquée à l’Art de l’Ingénieur. Masson, Paris, 1986.

    MATH  Google Scholar 

  21. S. Pernet, X. Ferrieres, and G. Cohen. High spatial order finite element method to solve Maxwell’s equations in time domain. IEEE Trans. Antennas and Propagation, 53(9):2889–2899, 2005.

    Article  ADS  MathSciNet  Google Scholar 

  22. R. D. Richtmyer and K. W. Morton. Difference methods for initial-value problems, volume 4 of Interscience Tracts in Pure and Applied Mathematics. John Wiley & Sons, Inc., New York, 2nd edition, 1967.

    Google Scholar 

  23. M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

    Google Scholar 

  24. G. R. Shubin and J. B. Bell. A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput., 8(2):135–151, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Schwartz. Analyse I – Théorie des Ensembles et Topologie. Hermann, Paris, 1991.

    MATH  Google Scholar 

  26. E. F. Toro and V. A. Titarev. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J. Comput. Phys., 202(1):196–215, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. E. W. Weisstein. Chebyshev polynomial of the first kind. MathWorld. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html , 2006.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Gilbert, J.C., Joly, P. (2008). Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions. In: Glowinski, R., Neittaanmäki, P. (eds) Partial Differential Equations. Computational Methods in Applied Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8758-5_4

Download citation

Publish with us

Policies and ethics