Skip to main content

The Geant4 Simulation Toolkit and Applications

For the Geant4 Collaboration

  • Conference paper
Molecular Imaging: Computer Reconstruction and Practice

Abstract

Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used in a number of different application domains, including medical imaging and treatment, high energy physics experiments, and the assessment of radiation effects on satellites. Geant4 provides physics processes and models describing electromagnetic and hadronic interactions, and includes decay and optical processes. The energy range of processes spans from about 100eV for electrons to 10PeV for muons. Physics models are provided for electrons, positrons, gammas, hadrons, ions and optical photons. Often a choice of implementations is available for a physical process, providing different modelling approaches or a different level of approximation. Geant4 offers users a choice between prepared physics model configurations and the ability to create their own customised configuration, tailored for their requirements. Users can also choose which parts of the toolkit to utilise and assemble them, in a manner suitable for their particular application area. The Geant4 toolkit is open source, which enables its open distribution, and its incorporation into applications and frameworks. An overview of its capabilities is presented here spanning from its geometry and kernel capabilities, to its physics modelling and validation, and touching on the abilities it provides users to visualise setups and events and to configure applications interactively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Geant4: a simulation toolkit, Nucl. Instrum. Meth. A 506, 250-303 (2003).

    Article  ADS  Google Scholar 

  2. J. Allison, K. Amako et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53(1),270-278 (2006).

    Article  ADS  Google Scholar 

  3. J. Apostolakis, G. Cosmo, and M. Asai, The Geant4 Kernel: Status and Recent Developments, in the Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, Tennessee, April 17-21, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005).

    Google Scholar 

  4. R. Chytracek, The Geometry Description Markup Language, Proceedings of CHEP 2001.Beijing R. Chytracek, J. Mccormick, W. Pokorski, G.Santin, Nuclear Science, IEEE Transactions on October 2006, Volume: 53, 2892-2896.

    Article  Google Scholar 

  5. S. Tanaka, K. Hashimoto, and Y. Sawada, Proceedings of the Computing in High-energy and Nuclear Physics Conference, CHEP'98, Chicago, IL (1998).

    Google Scholar 

  6. H. Burkhardt et al., Geant4 Standard Electromagnetic Physics, IEEE NSS-33-179 Conference Record (2004).

    Google Scholar 

  7. S. Chauvie, G. Depaola, V. Ivanchenko, F. Longo, P. Nieminen, and M.G. Pia, Geant4 low energy electromagnetic physics, in Proceedings of the Computing in High Energy and Nuclear Physics, Beijing, China, pp. 337-340 (2001).

    Google Scholar 

  8. E. Daly et al., Space Applications of the Geant4 Simulation Toolkit, Proceedings of the MC2000 Conference, Lisbon (2000).

    Google Scholar 

  9. S. Chauvie et al., Medical Applications of the Geant4 Simulation Toolkit, Proceedings of the MC2000 Conference, Lisbon (2000).

    Google Scholar 

  10. R. Brun, F. Bruyant, A.C. McPherson, M. Maire, and P. Zanarini, ‘Geant 3 (Users Guide)’, CERN Data Handling Division, DD/EE/84-1 (1987).

    Google Scholar 

  11. V.N. Ivanchenko, M. Maire, and L. Urban, Geant4 standard electromagnetic package for HEP applications, in Conf. Rec. 2004 IEEE Nuclear Science Symposium, N33-165 (2004).

    Google Scholar 

  12. J. Apostolakis et al., CERN-OPEN-99-299 (1999).

    Google Scholar 

  13. O. Kadri, V.N. Ivanchenko, F. Gharbi, and A. Trabelsi, Geant4 simulation of electron energy deposition in extended media, in Nucl. Instr. Meth. B 258 (2), 381-387 (2007).

    Article  ADS  Google Scholar 

  14. J. Apostolakis, S. Giani, V. Grichine et al., Nucl. Instr. Meth. A453, 597 (2000).

    ADS  Google Scholar 

  15. V.M. Grichine and S.S. Sadilov (Lebedev Inst. & CERN), GEANT4 X-ray transition radiation package, Nucl. Instrum. Meth. A563 (2), 299-302 (2006).

    ADS  Google Scholar 

  16. L. Urban, A multiple scattering model in Geant4, CERN-OPEN-2006-077 (December 2006).

    Google Scholar 

  17. A.G. Bogdanov, H. Burkhardt, V.N. Ivanchenko, S.R. Kelner, R.P. Kokoulin, M. Maire, A.M. Rybin, and L. Urban, Geant4 simulation of production and interaction of muons, in IEEE Trans. Nucl. Sci. 53 (2), 513-519 (2006).

    Article  ADS  Google Scholar 

  18. J. Apostolakis, V.M. Grichine, V.N. Ivanchenko, M. Maire, and L. Urban, The recent upgrades in the Standard electromagnetic physics package, in Proceedings of the CHEP'06 Conference, Mumbai, India, February 2006.

    Google Scholar 

  19. J. Apostolakis et al., CERN-OPEN-99-034 and INFN/AE-99/18 (1999).

    Google Scholar 

  20. H. Paganetti, H. Jiang, J.A. Adams, G.T.Y. Chen, and E. Rietzel, Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution, Int. J. Radiat. Oncol., Biol., Phys. 60, 942-950 (2004).

    Article  Google Scholar 

  21. P. Rodrigues, R. Moura, C. Ortigao, L. Peralta, M. G. Pia, A. Trindade, et al., Geant4 applications and developments for medical physics experiments, IEEE Trans. Nucl. Sci. 51(4), 1412-1419 (August 2004).

    Article  ADS  Google Scholar 

  22. K. Amako, S. Guatelli, V. Ivanchenko, et al., Validation of Geant4 Electromagnetic Physics against Protocol Data, IEEE Nuclear Science Symposium 2004 Conference Record, Rome, Italy (2004).

    Google Scholar 

  23. H. Araujo et al., Geant4 low energy electromagnetic physics, in The Monte Carlo method: versatility unbounded in a dynamic computing world, Proceedings of the Monte Carlo 2005 MC2005 Conference, Chattanooga, TN, April 17-21, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005).

    Google Scholar 

  24. D. Cullen et al., EPDL97: the Evaluated Photon Data Library, 97 version, UCRL-50400, Vol. 6, Rev. 5 (1997).

    Google Scholar 

  25. S.T. Perkins et al., Tables and Graphs of Electron-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), UCRL-50400 Vol. 31 (1997).

    Google Scholar 

  26. S.T. Perkins et al., Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-100, UCRL-50400 Vol. 30 (1997).

    Google Scholar 

  27. J. Baró , J. Sempau, J. M. Fernández-Varea, and F. Salvat, Penelope: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Instr. Meth. B, 100(1), 31-46 (1995). J. Sempau, E. Acosta, J. Baro, J.M. Fernandez-Varea, and F. Salvat, Nucl. Instr. Meth. B 132, 377-390 (1997); J. Sempau, J.M. Fernandez-Varea, E. Acosta, and F. Salvat, Nucl. Instr. Meth. B 207, 107-123 (2003).

    Article  ADS  Google Scholar 

  28. S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M.G. Pia, and S. Saliceti, Geant4 Atomic Relaxation, in Conf. Rec. 2004 IEEE Nuclear Science Symposium, N44-4 (2004).

    Google Scholar 

  29. S. Chauvie, P. Nieminen, and M.G. Pia, Geant4 model for the stopping power of low energy negatively charged hadrons, IEEE Nuclear Science Symposium 2006 Conference Record, San Diego, CA (2006).

    Google Scholar 

  30. ICRU A. Allisy et al., ICRU Report 49 (1993).

    Google Scholar 

  31. J.F. Ziegler and J.M. Manoyan, Nucl. Instr. Meth. B 35, 215 (1988).

    Article  ADS  Google Scholar 

  32. Brond-2.2: A.I Blokhin et al., Current status of Russian Nuclear Data Libraries, Nuclear Data for Science and Technology, Vol. 2, p. 695, edited by J.K. Dickens, American Nuclear Society, LaGrange, IL (1994).

    Google Scholar 

  33. CENDL-2: Chinese Nuclear Data Center, CENDL-2, The Chinese Evaluated Nuclear Data Library for Neutron Reaction Data, Report IAEA-NDS-61, Rev. 3, International Atomic Energy Agency, Vienna, Austria (1996).

    Google Scholar 

  34. H.D. Lemmel (IAEA), EFF-2.4, The European Fusion File 1994, including revisions up to May 1995, Summary Documentation, IAEA-NDS-170 (June 1995).

    Google Scholar 

  35. JEF-2: C. Nordborg, M. Salvatores, Status of the JEF Evaluated Data Library, Nuclear Data for Science and Technology, edited by J.K. Dickens American Nuclear Society, LaGrange, IL (1994).

    Google Scholar 

  36. ENDF/B-VI: Cross Section Evaluation Working Group, ENDF/B-VI Summary Document, Report BNL-NCS-17541 (ENDF-201), edited by P.F. Rose, National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY (1991).

    Google Scholar 

  37. FENDL/E2.0, The processed cross-section libraries for neutron-photon transport calculations, version 1 of February 1998. Summary documentation H. Wienke and M. Herman, report IAEA-NDS-176 Rev. 0 (International Atomic Energy Agency, April 1998). Data received on tape (or: retrieved online) from the IAEA Nuclear Data Section.

    Google Scholar 

  38. JEF-2.2: C. Nordborg, M. Salvatores, Status of the JEF Evaluated Data Library, Nuclear Data for Science and Technology, edited byJ.K. Dickens, American Nuclear Society, LaGrange, IL (1994).

    Google Scholar 

  39. JENDL-3: T. Nakagawa, et al., Japanese Evaluated Nuclear Data Library, Version 3, Revision 2, J. Nucl. Sci. Technol. 32, 1259 (1995).

    Google Scholar 

  40. Yu. N. Shubin, V.P. Lunev, A.Yu. Konobeyev, and A.I. Ditjuk, Cross section data library MENDL-2 to study activation as transmutation of materials irradiated by nucleons of intermediate energies, report INDC(CCP)-385, International Atomic Energy Agency (May 1995).

    Google Scholar 

  41. M.R. Bhat, Evaluated Nuclear Data File (ENSDF), Nuclear Data for Science and Technology, p. 817, edited by S.M. Qaim, Springer, Berlin, Germany (1992).

    Google Scholar 

  42. M.P. Guthrie, R.G. Alsmiller, and H.W. Bertini, Nucl. Instr. Meth. 66, 29 (1968); H.W. Bertini and P. Guthrie, Nucl. Phys. A169 (1971).

    Article  Google Scholar 

  43. N.V. Stepanov, ITEP Preprint ITEP-55, Moscow (1988).

    Google Scholar 

  44. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966).

    Article  ADS  Google Scholar 

  45. A. Heikkinen, A., N. Stepanov, and J.P. Wellisch, Bertini Intra-Nuclear Cascade implementation in Geant4, in Proceedings of CHEP03 Conference, La Jolla, CA nucl-th/0306008 (March 2003).

    Google Scholar 

  46. G. Folger, V.N. Ivanchenko, and J.P. Wellisch, Eur. Phys. J. A21, 407 (2004).

    ADS  Google Scholar 

  47. M.V. Kossov, Manual for the CHIPS event generator, KEK internal report 2000-17, Feb 2001 H/R; P.V. Degtyarenko, M.V. Kossov, and H.P. Wellisch, Eur. Phys. J. A8 (2), 217 (2000).

    ADS  Google Scholar 

  48. P.V. Degtyarenko, M.V. Kossov, and H.P. Wellisch, Eur. Phys. J. A9 (2), 211 (2001).

    Google Scholar 

  49. P.V. Degtyarenko, M.V. Kossov, and H.P. Wellisch, Eur. Phys. J. A9 (2), 221 (2001).

    Google Scholar 

  50. K. Amako, S. Guatelli, V. Ivanchenko, B. Mascialino, K. Murakami, L. Pandola, et al., Comparison of Geant4 electromagnetic physics models against the NIST reference data, IEEE Trans. Nucl. Sci. 52(4), 910-918 (2005).

    Article  ADS  Google Scholar 

  51. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, and D.S. Zucker, XCOM: photon cross section database (version 1.2), National Institute of Standards and Technology, Gaithersburg, MD (1999). URL: http://physics.nist.gov/PhysRefData/Xcom/Text/ XCOM.html.

  52. M.J. Berger, J.S. Coursey, and D.S. Zucker, ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons and helium ions (version 1.2.2), National Institute of Standards and Technology, Gaithersburg, MD (2000). url: http://physics.nist.gov/PhysRefData/Star/Text/contents.html.

  53. G.A.P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascialino, S. Parlati, et al., A Goodness-of-Fit Statistical Toolkit, IEEE Trans. Nucl. Sci. 51 (5), 2056-2063 (Oct 2004).

    Article  ADS  Google Scholar 

  54. G.A.P. Cirrone, G. Cuttone, S. Donadio, V. Grichine, S. Guatelli, P. Gumplinger, et al., Precision validation of Geant4 electromagnetic physics, in Conf. Rec. 2003 IEEE Nuclear Science Symposium, N23-2 (2003).

    Google Scholar 

  55. V.N. Ivanchenko, H. Burkhardt, M. Maire, V.M. Grichine, R.P Kokoulin, L. Urban, et al., “Overview and new developments on Geant4 electromagnetic physics”, in Proceedings of the Computing in High Energy and Nuclear Physics, Interlaken, Switzerland, 320 (2004).

    Google Scholar 

  56. J.-F. Carrier, L. Archambault, and L. Beaulieu, Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics, Med. Phys. 31, 484-492 (2004).

    Article  Google Scholar 

  57. E. Poon and F. Verhaegen, Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications, Med. Phys. 32 (6), 1696-1711 (2005); E. Poon, J. Seuntjens, and F. Verhaegen Consistency test of the electron transport algorithm in the GEANT4 Monte Carlo code, Phys. Med. Biol. 50, 681-694 (2005).

    Article  Google Scholar 

  58. S. Elles, V. Ivanchenko, M. Maire, and L. Urban, Geant4 and Fano cavity : where are we? LAPPTECh-2004-04, and to appear in Proceedings of Third McGill International Workshop on Monte carlo techniques in Radiotherapy Delivery and Verification, Montreal, Canada (2007), Journal of Physics: Conference Series, IOP Publishing Lim.

    Google Scholar 

  59. A.J.E. Raajmakers et al., Experimental verification of magnetic field does effects for the MRI-accelerator, Phys. Med. Biol. 52, 4283-4291.

    Google Scholar 

  60. C. Alexa, J. Apostolakis, S. Banerjee, S. Constantinescu, A. De Roeck, S. Dita, A. Dotti, D. Elvira, F. Gianotti, A. Kiryunin, A. Lupi, C. Roda, D. Salihagic, P. Schacht, P. Strizenec, and H.-P. Wellisch, G4 Hadronic Physics Validation with LHC test-beam data: First Conclusions CERN-LCGAPP-2004-10 (July 2004); A. Ribon, Physics validation of the simulation packages in a LHC-wide effort, in Proceedings of the Computing in High Energy and Nuclear Physics, Interlaken, Switzerland, 493 (2004).

    Google Scholar 

  61. G. Santinab, P. Nieminena, H. Evansab, E. Dalya, F. Leic, P.R. Truscottc, C.S. Dyerc, B. Quaghebeurd, and D. Heynderickx, New Geant4 based simulation tools for space radiation shielding and effects analysis, Nucl. Phys. B 125, 69-74 (2003).

    Article  Google Scholar 

  62. D. Heynderickx, B. Quaghebeur, E. Speelman, and E. Daly, ESA's Space Environment Information System (SPENVIS) - A WWW interface to models of the space environment and its effects, 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA 2000-0371 (2000). SPENVIS website is http://www.spenvis.oma.be/spenvis/.

  63. I. Agapov, J. Carter, G. A. Blair, and O. Dadoun, BDSIM - Beamline Simulation Toolkit Based on GEANT4, Proceedings of EPAC 2006, Edinburgh, Scotland, WEPCH124 (2006).

    Google Scholar 

  64. K. Beard, S.A. Bogacz, Y. Derbenev, K. Yonehara, R.P. Johnson, K. Paul, and T.J. Roberts, International Workshop on Beam Cooling and Related Topics - COOL05. AIP Conference Proceedings, Vol. 821, pp. 453-457 (2006); T.J. Roberts, D.M. Kaplan, THPAN103, Proceedings of IEEE Particle Accelerator Conference PAC07, Albuquerque, NM.

    Google Scholar 

  65. S. Jan et al., GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49, 4543 (2004).

    Article  Google Scholar 

  66. V. Lara and J. P. Wellisch, CHEP 2000: Computing in High Energy and Nuclear Physics, pp. 52-55 (2000).

    Google Scholar 

  67. N.S. Amelin and L.V. Bravina, Yad. Fiz. 51, 211 (1990) [Sov. J. Nucl. Phys. 51, 133 (1990)]; .S. Amelin, K.K. Gudima, and V.D. Toneev, Yad. Fiz. 51, 512 (1990) [Sov. J. Nucl. Phys. 51,327 (1990)]; G. Folger and J.-P. Wellisch, String Parton Models in Geant4, Proceedings of CHEP03, La Jolla, CA, nuclth/0306007 (Mar 2003).

    Google Scholar 

  68. Low and High Energy Modeling in Geant4, T. Koi, D.H. Wright, G. Folger, V. Ivanchenko, M. Kossov, N. Starkov, A. Heikkinen, P. Truscott, F. Lei, and H.P. Wellisch, in Hadronic Shower SimulationWorkshop, 6-8 Sept. 2006, Batavia, IL, edited by M. Albrow and R. Raja, AIP Conference Proceedings 896.

    Google Scholar 

  69. P.V. Degtyarenko, M.V. Kossov, and H.P. Wellisch, Chiral invariant phase space event generator, III Photonuclear reactions below Δ(3,3) excitation, Eur. Phys. J. A 9 (2001).

    Google Scholar 

  70. H. Fesefeldt, GHEISHA: The Simulation of Hadronic Showers, RWTH/PITHA 85/02 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Apostolakis, J. (2008). The Geant4 Simulation Toolkit and Applications. In: Lemoigne, Y., Caner, A. (eds) Molecular Imaging: Computer Reconstruction and Practice. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8752-3_5

Download citation

Publish with us

Policies and ethics