Skip to main content
  • 1279 Accesses

Abstract

A peer-to-peer collaboration framework for multi-sensor data fusion in resource-rich radar networks is presented. In the multi-sensor data fusion, data needs to be combined in such a manner that the real-time requirement of the sensor application is met. In addition, the desired accuracy in the result of the multi-sensor fusion has to be obtained by selecting a proper set of data from multiple radar sensors. A mechanism for selecting a set of data for data fusion is provided considering application- specific needs. We also present a dynamic peer-selection algorithm, called Best Peer Selection (BPS) that chooses a set of peers based on their computation and communication capabilities to minimize the execution time required for processing data per integration algorithm. Simulation-based results show that BPS can deliver a significant improvement in execution time for multi-radar data fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLaughlin, D.J., Chandrasekar, V., Droegemeier, K., Frasier, S., Kurose, J., Junyent, F., Philips, B., Cruz-Pol, S., and Colom, J. “Distributed Collaborative Adaptive Sensing (DCAS) for Improved Detection, Understanding, and Prediction of Atmospheric Hazards,” in Proc. of AMS IIPS for Meteorology, Oceanography, and Hydrology, American Meteorological Society (AMS), 11.3, Jan 2005

    Google Scholar 

  2. Lim, S., Chandrasekar, V., Lee, P., Jayasumana, A. P., “Reflectivity Retrieval in a Networked Radar Environment: Demonstration from the CASA IP-1 Radar Network,” Proc. of IGARSS07, Barcelona, Spain. Jul. 2007

    Google Scholar 

  3. Donovan, B., McLaughlin, D., Kurose, J. V. Chandrasekar “Principles and Design Considerations for Short-Range Energy Balanced Radar Networks”, Proc. of IGARSS05, Seoul, Korea, pp. 2058-2061, Jul. 2005

    Google Scholar 

  4. Zink, M., Westbrook, D., Abdallah, S., Horling, B., Lyons, E., Lakamraju, V., Manfredi, V., Kurose, J. and Hondl, K. “Meteorological Command and Control: An End-to-end Architecture for a Hazardous Weather Detection Sensor Network,” ACM Mobisys Workshop on End-end Sense-and-response Systems, pp. 37-42, Jun. 2005

    Google Scholar 

  5. Brotzge, K., Brewster, B., Johnson, B., Philips, M. Preston, D. Westbrook and M. Zink, “CASA’S First Test Bed: Integrative Project #1,” AMS 32nd Conf. Radar Meteor., Albuquerque, NM., 2005

    Google Scholar 

  6. BitTorrent. http:/ / www.bittorrent.com/

    Google Scholar 

  7. Gnutella. http:/ / gnutella.wego.com

    Google Scholar 

  8. Napster. http:/ / www.napster.com

    Google Scholar 

  9. Calvert L. K., Doar, M., Zegura, E., “Modeling Internet Topology”, IEEE Communications Magazine, vol. 65, no. 6, Jun. 1997. pp. 160-163

    Google Scholar 

  10. Legrand, A., Marchal, L., Casanova, H., “Scheduling Distributed Applications: the SimGrid Simulation Framework,” Proc. of CCGrid 2003. pp. 138-145, May 2003

    Google Scholar 

  11. Leland, W.E. et al., “On the Self-Similar Nature of Ethernet Traffic” IEEE/ ACM Trans. Networking, vol. 2, no. 1, 1994, pp. 1- 15

    Article  Google Scholar 

  12. Paxson, V. “Fast, Approximate Synthesis of Fractional Gaussian Noise for Generating Self-similar Network Traffic,” Computer Communication Review, vol. 27, pp. 5-18, Oct. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lee, P., Jayasumana, A.P., Lim, S., Chandrasekar, V. (2008). A Peer-to-Peer Collaboration Framework for Multi-sensor Data Fusion. In: Sobh, T., Elleithy, K., Mahmood, A., Karim, M.A. (eds) Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8737-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8737-0_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8736-3

  • Online ISBN: 978-1-4020-8737-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics