Skip to main content

Abstract

In this paper a mono-objective optimum design procedure for a six-degree of freedom parallel micro robot is outlined by using optimality criterion of workspace and numerical aspects. A mono-objective optimization problem is formulated by referring to a basic performance of parallel robots. Additional objective functions can be used to extend the proposed design procedure to more general but specific design problems. A kinematic optimization was performed to maximize the workspace of the mini parallel robot. Optimization was performed using Genetic Algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Gosselin. “Determination of the workspace of 6-d.o.f. parallel manipulators”.ASME Journal of Mechanical Design, 112:331–336, 1990.

    Article  Google Scholar 

  2. J. P. Merlet. “Determination of the orientation workspace of parallel manipulators”.Journal of intelligent and robotic systems, 13:143–160, 1995.

    Article  Google Scholar 

  3. A. Kumar, KJ. Waldron. “The workspace of mechanical manipulators”.ASME J. Mech. Des. 1981; 103:665-672.

    Google Scholar 

  4. YC. Tsai, AH. Soni. “Accessible region and synthesis of robot arm”.ASME J. Mech Des. 1981, 103: 803-811.

    Google Scholar 

  5. KG. Gupta, Roth B., “Design considerations for manipulator workspace”.ASME J. Mech. Des. 1982, 104(4), 704-711.

    Article  Google Scholar 

  6. K. Sugimoto, Duffy J, Hunt KH, “Special configurations of spatial mechanisms and robot arms”.Mech Mach Theory1982, 117(2); 119-132.

    Article  Google Scholar 

  7. KC. Gupta. “On the nature of robot workspaces”,Int. J. Rob. Res. 1986; 5(2): 112-121

    Google Scholar 

  8. JK. Davidson, KH. Hunt, “Rigid body location and robot workspace: some alternative manipulator forms”.ASME J. Mech. Transmissions Automat Des 1987, 109(2); 224-232.

    Google Scholar 

  9. SK. Agrawal, “Workspace boundaries of in-parallel manipulator systems”.Int. J. Robotics Automat 1990, 6(3) 281-290.

    Google Scholar 

  10. C. Gosselin, Angeles J. “Singularities analysis of closed loop kinematic chains”.IEEE Trans Robotics Automat1990; 6(3) 281-290.

    Article  Google Scholar 

  11. M. Cecarelli, “A synthesis algorithm for three-revolute manipulators by using an algebraic formulation of workspace boundary”.ASME J. Mech. Des.1995; 117(2(A)): 298-302.

    Google Scholar 

  12. S. K. Agrawal. “Workspace boundaries of in-parallel manipulator systems”.IEEE Transactions on Robotics and Automation, 7(2):94–99, 1991.

    Google Scholar 

  13. F. Pernkopf and M. Husty, “Reachable Workspace and Manufacturing Errors of Stewart-Gough Manipulators”,Proc. of MUSME 2005, the Int. Sym. on Multibody Systems and Mechatronics Brazil, 2005, p. 293-304.

    Google Scholar 

  14. S. Stan, Diplomarbeit,Analyse und Optimierung der strukturellen Abmessungen von Werkzeugmaschinen mit Parallelstruktur, IWF-TU Braunschweig, 2003, Germany.

    Google Scholar 

  15. K. Cleary and T. Arai. “A prototype parallel manipulator: Kinematics, construction, software, workspace results, and singularity analysis”. InProceedings of International Conference on Robotics and Automation, pages 566–571, Sacramento, California, April 1991.

    Google Scholar 

  16. C. Ferraresi, G. Montacchini, and M. Sorli. “Workspace and dexterity evaluation of 6 d.o.f. spatial mechanisms”. InProceedings of the ninth World Congress on the theory of Machines and Mechanism, pages 57–61, Milan, August 1995.

    Google Scholar 

  17. M. Ceccarelli, G. Carbone, E. Ottaviano, “An Optimization Problem Approach For Designing Both Serial And Parallel Manipulators”,Proc. of MUSME 2005, the Int. Sym. on Multibody Systems and Mechatronics Uberlandia, Brazil, 6-9 March 2005

    Google Scholar 

  18. M. Ceccarelli,Fundamentals of Mechanics of Robotic Manipulation, Dordrecht, Kluwer/Springer, 2004.

    MATH  Google Scholar 

  19. J.A. Snyman, L.J. du Plessis, and J. Duffy. “An optimization approach to the determination of the boundaries of manipulator workspaces”.Journal of Mechanical Design, 122:447–455, 2000.

    Article  Google Scholar 

  20. L.J. Du Plessis and J.A. Snyman. “A numerical method for the determination of dextrous workspaces of Gough-Stewart platforms”.Int. Journal for Numerical Methods in Engineering, 52:345–369, 2001.

    Article  MATH  Google Scholar 

  21. Schoenherr, Bemessen, , “Bewerten und Optimieren von Parallelstrukturen”, In: Proc. 1st Chemnitzer Parallelstruktur Seminar, Chemnitz, Germany, 85-96, 1998. J. Hesselbach, H. Kerle, M. Krefft, N. Plitea, “The Assesment of Parallel Mechanical Structures for Machines Taking Account of their Operational Purposes”. In: Proc. of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004.

    Google Scholar 

  22. S. Stan,Workspace optimization of a two degree of freedom mini parallel robot, 2006 IEEE— AQTR 2006 (THETA 15), May 25-28 2006, Cluj-Napoca, Romania, IEEE Catalog number: 06EX1370, ISBN: 1-4244-0360-X, pp. 278-283.

    Google Scholar 

  23. S. Stan, V. Maties, R. Balan, “Optimal Design of a 2 DOF Micro Parallel Robot Using Genetic Algorithms”, Proceedings of the 2007 IEEE-ICIT 2007, IEEEInternational Conference on Integration Technology, March 20 - 24, 2007, Shenzhen, China, p. 719-724. IEEE Catalog Number: 07EX1735, ISBN: 1-4244-1091-6, ISBN: 1-4244-1092-4

    Google Scholar 

  24. S. Stan, “Optimal design of a parallel kinematic machine with two degrees of freedom”, 10th European Mechanics of Materials Conference (EMMC-10), ISBN 978-83-89687-16-6, p. 419-429, Kaziemierz Dolny, Poland, June 11-14, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Stan, SD., Maties, V., Balan, R., Lapusan, C. (2008). Optimization of a Hexapod Micro Parallel Robot Using Genetic Algorithms. In: Elleithy, K. (eds) Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8735-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8735-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8734-9

  • Online ISBN: 978-1-4020-8735-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics