Advertisement

Ambiguity and Contradiction From a Morpho-Syntactic Prototype Perspective

  • M.D. López De Luise

Abstract

In this paper, the contradiction and ambiguity problems in Natural language Processing are briefly introduced. We also present the morpho-syntactic WIH (Web Intelligent Handler) prototype and the overall approach it takes to process any Spanish text. Finally, we analyze how it processes Spanish sentences with contradictions or ambiguities using its own perspective, despite deeper linguistic considerations.

Keywords

Natural Language Processing Computational Linguistic Original Text Lexical Ambiguity Semantic Ambiguity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bargalló M., Forgas E., Garriga C., Rubio A. Las lenguas de especialidad y su didáctica. Schnitzer Eds. Universitat Rovira i Virgili. Tarragona, cap. 1 (P. Schifko, Wirtschaftsuniversität Wien), pp. 21-29. 2001..Google Scholar
  2. [2]
    Alonso Pardo M. A. Interpretación tabular de autómatas para lenguajes de adjunción de árboles. PhD Theses. Spain. 2000.Google Scholar
  3. [3]
    José Padrón G. Notas Sobre Análisis Del Lenguaje. Cap. 1: modelo GENERAL de los lenguajes. Maracaibo. La Universidad del Zulia -Doctorado en ciencias Humanas. 1997.Google Scholar
  4. [4]
    Butt M. XLE: Grammar Development Platform. Proc of ES SLLI-2000. 2000.Google Scholar
  5. [5]
    Malheiro B., Oliveira E. Improving Assumption-based Distributed Belief Revision. SCAI 95. pp 41-50. 1995.Google Scholar
  6. [6]
    Gómez-Gauchía H., Díaz Aguado B., González Calero P. Two-Layered approach to Knowledge representation using conceptual Maps and Description Logics. Proc. Of CMC2004. 2004.Google Scholar
  7. [7]
    Gómez-Gauchía H., Díaz Aguado B., González Calero P. Ontology-Driven Development of Conversational CBR Systems. Proc. Of ECCBR. 2006.Google Scholar
  8. [8]
    Anderson M., Bathia M. Handling Uncertainty with Active Logic. Proc. of AAAI. 2001.Google Scholar
  9. [9]
    Bobrow D. B., Condoravdi C., de Paiva V., Karttunen L., King T. H., Nairn R., Price L., Zaenen A. Precision-focused Textual Inference. Proc. of ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.2007.Google Scholar
  10. [10]
    Di Eugenio B. Understanding Natural Language instructions: A Computational Approach to Purpose Clauses. PhD thesis. 1993.Google Scholar
  11. [11]
    Crouch D., et. al. Entailment, Intentionality and Text Understanding. Proc of HLT-NAACL. Vol 9, pp. 38-45. 2003.Google Scholar
  12. [12]
    Bernard G. Compréhension de texte, opérations linguistiques, linguistique textuelle, reference. 1990.Google Scholar
  13. [13]
    Bernard G., Feat J., San Gines P., Sabido V. Comprension de textos: elementos de modelizacion. Caminos del texto (Actes des colloques de Madrid et Grenade). Universidad de Granada. 1995.Google Scholar
  14. [14]
    Ruch P., Gaudinat A. Comparing corpora and lexical ambiguity. Workshop on Comparing Corpora, Proc. of ACL, Hong-Kong. 2000.Google Scholar
  15. [15]
    Kennedy C., Boguraev B. Anaphora for Everyone: Pronominal Anaphora Resolution without a Parser. Proc. of the 16th conference on Computational linguistics - Volume 1. Copenhagen, Denmark. pp. 113 - 118.Google Scholar
  16. [16]
    Montemagni S., et.al. Resolving syntactic ambiguities with lexico-semantic patterns: an analogy-based approach. Proc. of the 16th conference on Computational linguistics - Vol 1. Copenhagen, Denmark. pp. 376 - 381. 1996.Google Scholar
  17. [17]
    Levinger M., Ornan U. Learning Morpho-lexical Probabilities from an Untagged Corpus with an Application to Hebrew. Computational Linguistics. Volume 21, Issue 3. pp. 383-404. 1995.Google Scholar
  18. [18]
    Prószéky G., Naszódi M., Kis B. Recognition Assistance: Treating Errors in Texts Acquired from Various Recognition Processes. Proc. of the 19th international conference on Computational linguistics - Vol 2. pp 1-5. 2002.Google Scholar
  19. [19]
    Langer H. Syntactic Normalization of Spontaneous Speech. Proc. of the 13th conference on Computational linguistics - Vol 3. Helsinki, Finland. pp 180 - 183. 1990.Google Scholar
  20. [20]
    Rosario B., Hearst M. Classifying the Semantic Relations in Noun Compounds via a Domain-Specific Lexical Hierarchy. Proc. of Conference on Empirical Methods in Natural Language Processing. p. 82-90. 2001.Google Scholar
  21. [21]
    Rosario B., Hearst M.A., Fillmore C. The Descent of Hierarchy, and Selection in Relational Semantics. Meeting of the Association for Computational Linguistics (ACL). 2002.Google Scholar
  22. [22]
    Cha J., Lee G. Structural disambiguation of morpho-syntactic categorical parsing for Korean. Proc. of the 18th conference on Computational linguistics - Vol 2. Saarbrücken, Germany. pp. 1002 - 1006. 2000.Google Scholar
  23. [23]
    Kinyon A. Hypertags. International Proc. of 18th conference on Computational linguistics – Vol . Saarbrücken, Germany. pp. 446 - 452. 2000.Google Scholar
  24. [24]
    Civit M., Martí M.A. Estándares de Anotación Morfosintáctica para el español. Taller de Herramientas y Recursos Lingüísticos para el Español y el Portugués. Tonantzintla, México. 2004.Google Scholar
  25. [25]
    Martínez Fernández P., García Serrano A.M. Interacción persona-web empleando recursos lingüísticos. Revista Iberoamericana de Inteligencia Artificial. N16. pp 55 - 65. 2002.Google Scholar
  26. [26]
    López De Luise M. D. A Morphosyntactical Complementary Structure for Searching and Browsing . Proc. Of SCSS 2005. Springer. pp. 283 - 290. 2005.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M.D. López De Luise
    • 1
  1. 1.Department of Informatics EngineeringUniversidad de Palermo UniversityCapital FederalArgentina

Personalised recommendations