Morphological Enhancement and Triangular Matching for Fingerprint Recognition

  • V. Conti
  • G. Milici
  • S. Vitabile
  • F. Sorbello


Among the principal problems for realizing a robust Automated Fingerprint Identification System (AFIS) there are the images quality and matching algorithms. In this paper a fingerprint enhancement algorithm based on morphological filter and a triangular matching are introduced. The enhancement phase is based on tree steps: directional decomposition, morphological filter and composition. For the matching phase a global transformation to overcame the effects of rotation, displacement and deformation between acquired and stored fingerprint is performed using the number of similar triangular, having fingerprint minutiae as vertexes. The performance of the proposed approach has been evaluated on two set of images: the first one is DB3 database from Fingerprint Verification Competition (FVC) and the second one is self collected using an optical scanner.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Conti, G. Pilato, S. Vitabile, F. Sorbello, “Verification of Ink-on-paper Fingerprints by Using Image Processing Techniques and a New Matching Operator”, Proc. of VIII Workshop AI*IA, September 2002.Google Scholar
  2. [2]
    V. Conti, G. Pilato, S. Vitabile, F. Sorbello, “A Robust System for Fingerprints Identification”, Proc. of Knowledge-Based Intelligent Information Engineering System & Allied Technologies, Sept. 2002, pp. 1162-1166.Google Scholar
  3. [3]
    V. Conti, G. Milici, G. Vetrano, S. Vitabile, F. Sorbello, “Fingerprint Registration Using Specialized Genetic Algorithms”, Proc. of 8th International IEEE Conference EUROCON 2005 - The International Conference on Computer as a tool, Belgrade, Serbia & Montenegro 21-24 november 2005, pp. 1382-1385Google Scholar
  4. [4]
    M. Deriche, P.T. Jackway, “Scale-Space Properties of the multiscale morphological dilation-erosion”, IEEE Transactions Pattern Analysis and Machine Intelligence, 1996, vol. 18, n° 1, pp. 38-51CrossRefGoogle Scholar
  5. [5]
    L. Hong, Y. Wan, A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation”, IEEE Transactions Pattern Analysis and Machine Intelligence, 1998, vol. 20, n° 8, pp. 777-789CrossRefGoogle Scholar
  6. [6]
    A.K. Jain, L. Hong, R. Bolle, “On line fingerprint verification”, IEEE transactions on pattern analysis and machine intelligence, Vol. 19, No.4, 1997, pp. 302-313CrossRefGoogle Scholar
  7. [7]
    A.K. Jain, L. Hong, S. Pankanti, R. Bolle, “An identity authentication system using fingerprints”, Proceedings of the IEEE, Vol. 85, no. 9, 1997, pp. 1365–1388, ISSN: 0018-9219CrossRefGoogle Scholar
  8. [8]
    Khmanee, C., Nguyen, D., “On the design of 2D Gabor filtering of fingerprint images”, Consumer Communications and Networking Conference, 2004, IEEE , 5-8 Jan. 2004, Pages:430 – 435Google Scholar
  9. [9]
    D. Maio and D. Maltoni, “Direct Gray-Scale Minutiae Detection in Fingerprints”, IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 19, no. 1, pp. 27-40, 1997CrossRefGoogle Scholar
  10. [10]
    G. Milici, G. Raia, S. Vitabile, F. Sorbello, “Fingerprint Image Enhancement Using Directional Morphological Filter”, Proc. of 8th International IEEE Conference EUROCON 2005 - The International Conference on Computer as a tool, Belgrade, Serbia & Montenegro 21-24 november 2005, pp. 967-970Google Scholar
  11. [11]
    Chul-Hyun Park, Joon-Jae Lee, Smith, M.J.T., Sang-il Park, Kil-Houm Park, “Directional filter bank-based fingerprint feature extraction and matching”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 14 , Issue: 1 , Jan. 2004 pp. 74–85Google Scholar
  12. [12]
    J. Yang, L. Liu, Y. Fan, “A modified Gabor filter design method for fingerprint image enhancement”, Pattern Recognition Letters, 2003, 24, pp. 1805-1817CrossRefGoogle Scholar
  13. [13]
    B. G. Sherlock, D. M. Monro, K. Millard, “Fingerprint enhancement by directional Fourier filtering”, IEEE Proceedings in Visual Image Signal Processing, 141(2):87–94, April 1994Google Scholar
  14. [14]
    X. Tan, B. Bhanu, “Robust fingeprint identification”, IEEE IICIP Conference, Vol. 1, pp. 277-280, 2002Google Scholar
  15. [15]
  16. [16]
  17. [17]
    Miao-li Wen; Yan Liang; Quan Pan; Hong-cai Zhang, “A Gabor filter based fingerprint enhancement algorithm in wavelet domain”, proceedings of IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005, Volume 2, 12-14 Oct. 2005 Page(s): 1468–1471Google Scholar
  18. [18]
    Areekul, V.; Watchareeruetai, U.; Suppasriwasuseth, K.; Tantaratana, S. “Separable Gabor filter realization for fast fingerprint enhancement”, proceedings of . IEEE International Conference on Image Processing, 2005. ICIP 2005, Volume 3, 11-14 Sept. 2005 Page(s): III-253-6Google Scholar
  19. [19]
    Dongdong Nie; Lizhuang Ma; XueZhong Xiao; Shuangjiu Xiao, “Optimization Based Fingerprint Direction Field Estimation” proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005, Page(s):6265 – 6268Google Scholar
  20. [20]
    Paul, A.M.; Lourde, R.M, “A Study on Image Enhancement Techniques for Fingerprint Identification”, proceedings of IEEE International Conference on Video and Signal Based Surveillance, 2006. AVSS ‘06, Nov. 2006 Page 16Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. Conti
    • 1
  • G. Milici
    • 1
  • S. Vitabile
    • 2
  • F. Sorbello
    • 1
  1. 1.Dipartimento di Ingegneria InformaticaUniversity of PalermoItaly
  2. 2.Dipartimento di Biotecnologie Mediche e Medicina LegaleUniversity of PalermoItaly

Personalised recommendations