Skip to main content

Abstract

Optimization problems in engineering involve very often nonlinear functions with multiple minima or discontinuities, or the simulation of a system in order to determine its parameters. Global search methods can compute a set of points and provide alternative design answers to a problem, but are computationally expensive. A solution for the CPU dependency is parallelization, which leads to the need to control the sampling of the search space. This paper presents a parallel implementation of two free-derivative optimization methods (Nelder-Mead and Powell), combined with two restart strategies to globalize the search. The first is based on a probability density function, while the second uses a fast algorithm to uniformly sample the space. The implementation is suited to a faculty network, avoiding special hardware requirements, complex installation or coding details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods,”SIAM Review, vol. 45, pp. 385-482, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Grosso, M. Locatelli, and F. Schoen, “A Population-based Approach for Hard Global Optimization Problems based on Dissimilarity Measures,”Mathematical Programming: Series A and B, vol. 110, pp. 373-404, 2003.

    Article  MathSciNet  Google Scholar 

  3. M. Mitchell,An Introduction to Genetic Algorithms (Complex Adaptive Systems): The MIT Press, 1998.

    Google Scholar 

  4. P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms.,” Caltech Concurrent Computation Program C3P Report 826, 1989.

    Google Scholar 

  5. M. Pogu and J. E. Souza de Cursi, “Global Optimization by Random Perturbation of the Gradient Method with a Fixed Parameter.,”Journal of Global Optimization, vol. 5, pp. 159-180, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”Science, vol. 220, pp. 671-680, 1983.

    Article  MathSciNet  Google Scholar 

  7. L. Bottou and N. Murata, “Stochastic Approximations and Efficient Learning,” inThe Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, USA.: Massachusetts Institute of Technology, 2002.

    Google Scholar 

  8. E. Cantu-Paz, “A survey of parallel genetic algorithms.,”Calculateurs Parallèles, Reseaux et Systèmes Répartis., vol. 10, pp. 141-171, 1998.

    Google Scholar 

  9. A. Bürmen, J. Puhan, T. Tuma, I. Fajfar, and A. Nussdorfer, “Parallel simplex algorithm for circuit optimisation,” inERK 2001, Portorož, Slovenija, 2001.

    Google Scholar 

  10. J. E. Dennis and V. Torczon, “Direct search methods on parallel machines,”SIAM J. Optimization, vol. 1, pp. 448-474, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Lewis, “Parallel Optimisation Algorithms for Continuous Non-Linear Numerical Simulations,” inFaculty of Engineering and Information Technology. vol. Doctor Brisbane, Australia: Griffith University, 2004.

    Google Scholar 

  12. R. Lewis, V. Torczon, and M. Trosset, “Direct search methods: then and now,”Journal of Computational and Applied Mathematics, vol. 124, 2000.

    Google Scholar 

  13. R. P. Brent, “Algorithms for Minimization without Derivatives,v inAlgorithms for Minimization without Derivatives Englewood Cliffs, NJ, EUA: Prentice-Hall, 1973.

    Google Scholar 

  14. W. T. Vetterling and B. P. Flannery,Numerical Recipes in C++: The Art of Scientific Computing: Cambridge University Press, 2002.

    Google Scholar 

  15. M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator.,vACM Trans. on Modeling and Computer Simulation, vol. 8, pp. 3-30, 1998.

    Article  MATH  Google Scholar 

  16. M. A. Luersen and R. L. Riche, “Globalized Nelder-Mead for engineering optimization,”Computer&Structures, vol. 82, pp. 2251-2260, 2004.

    Article  Google Scholar 

  17. E. Parzen, “On estimation of a probability density function and mode.,”Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Marshall, “Nearest Neighbour Searching in High Dimensional Metric Spaces,” inDepartment of Computer Sciences. vol. Master Thesis in Information Technology: Australian National University, 2006.

    Google Scholar 

  19. S. A. Nene and S. K. Nayar, “A simple algorithm for nearest neighbor search in high dimensions,”IEEE Transactions on Pattern Analysis and Machine Intelligence,pp. 989-1003, 1997.

    Google Scholar 

  20. J. E. Souza de Cursi and A. Koscianski, “Physically Constrained Neural Network Models for Simulation,” inAdvances and Innovations in Systems, Computing, Sciences and Software Engineering, K. Elleithy, Ed. Dordrecht, The Netherlands: Springer, 2007.

    Google Scholar 

  21. M. J. D. Powell, “Direct search algorithms for optimization calculations,”Acta Numerica, vol. 7, pp. 287-336, 1998.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Koscianski, A., Luersen, M. (2008). Globalization and Parallelization of Nelder-Mead and Powell Optimization Methods. In: Elleithy, K. (eds) Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8735-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8735-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8734-9

  • Online ISBN: 978-1-4020-8735-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics