Skip to main content

Are Stretch-Activated Channels an Ocular Barometer?

  • Chapter

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

Cells are subject to mechanical forces within their environment. This chapter reviews the concept of mechanosensitivity as it pertains to stretch-activated channels and the possibility that they have barometric functions within the eye. The relevance of these concepts to the pressure-related eye disease of glaucoma is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agar A, Li S, Agarwal N et al. (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200

    Article  PubMed  CAS  Google Scholar 

  • Agar A, Yip SS, Hill MA, et al. (2000) Pressure related apoptosis in neuronal cell lines. J Neurosci Res 60:495–503.

    Article  PubMed  CAS  Google Scholar 

  • Agar A, Yip SS, Hill MA, et al. (2001) Retinal ganglion cell line apoptosis in a hydrostatic pressure model for chronic glaucoma. Invest Ophthalmol Vis Sci 42:S25

    Google Scholar 

  • Bearzatto B, Lesage F, Reyes R et al. (2000) Axonal transport of TREK and TRAAK potassium channels in rat sciatic nerves. Neuroreport 11:927–930

    Article  PubMed  CAS  Google Scholar 

  • Belmonte C, Garcia-Hirschfeld J, Gallar J (1997) Neurobiology of ocular pain. Progr Retinal Eye Res 16:117–156.

    Article  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Alderton JM, Steinhardt RA (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7:420–424

    Article  PubMed  CAS  Google Scholar 

  • Bradley JM, Kelley MJ, Rose A, et al. (2003) Signaling pathways used in trabecular matrix metalloproteinase response to mechanical stretch. Invest Ophthalmol Vis Sci 44:5174–5181

    Article  PubMed  Google Scholar 

  • Bradley JMB, Kelley MJ, Zhu XH, et al. (2001) Effects of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci 42:1505–1513

    PubMed  CAS  Google Scholar 

  • Brehm P, Kullberg R, Moody-Corbett F (1984) Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J Physiol 350:631–648

    PubMed  CAS  Google Scholar 

  • Comes N, Gassull X, Gual A, et al. (2005) Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp Eye Res 80:801–813

    Article  PubMed  CAS  Google Scholar 

  • Cooper KE, Tang JM, Rae JL et al. (1986) A cation channel in frog lens epithelia responsive to pressure and calcium. J Membr Biol 93:259–269

    Article  PubMed  CAS  Google Scholar 

  • Coroneo MT, Li S, Agar A, et al. (2001) Pressure related apoptosis in human and neuronal cell lines. Invest Ophthalmol Vis Sci 42:S23

    Google Scholar 

  • Coroneo MT, Li S, Agar A, et al. (2002) The two pore domain mechano-gated K+ channel opener arachidonic acid induces apoptosis in Rgc5 and differentiated Pc12 neuronal cell lines. Abstract presented at ARVO May 2002, E-Abstract 752

    Google Scholar 

  • Dahlin LB, Nordborg C, Lundborg G (1987) Morphologic changes in nerve cell bodies induced by experimental graded nerve compression. Exp Neurol 95:611–621

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Green WR, Wong VG (1983) Retinal atrophy induced by intravitreous colchicine. Invest Ophthalmol Vis Sci 24:301–311

    PubMed  CAS  Google Scholar 

  • Davies PF, Dull RO (1993) Haemodynamic forces in relation to mechanosensitive channels in endothelial cells. In: Frangos JA (ed) Physical forces and the Mammalian cell, 1st edn. Academic Press, San Diego, p 125–138

    Google Scholar 

  • Fink M, Duprat F, Lesage F et al. (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862

    PubMed  CAS  Google Scholar 

  • Fink M, Lesage F, Duprat F, et al. (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Gasull X, Ferrer E, Llobet A, et al. (2003) Cell membrane stretch modulates the high conductance Ca2+-activated K+ channel in bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 44:706–714

    Article  PubMed  Google Scholar 

  • Gelberman RH, Hergenroeder PT, Hargens AR et al. (1981) The carpal tunnel syndrome. A study of carpal canal pressures. J Bone Joint Surg Am 63:380–383

    PubMed  CAS  Google Scholar 

  • Gonzalez P, Epstein DL, Borrás T (2000) Genes upregulated in the human trabecular meshwork in response to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41:352–361

    PubMed  CAS  Google Scholar 

  • Goodman CM, Steadman AK, Meade RA et al. (2001) Comparison of carpal canal pressure in paraplegic and nonparaplegic subjects: clinical implications. Plast Reconstr Surg 107:1464–1471

    Article  PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol 363:119–134

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Katz B (1950) Depolarisation of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol (Lond) 111:261–282

    CAS  Google Scholar 

  • Kerrigan LA, Zack DJ, Quigley HA, et al. (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115:1031–1035

    PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Gnatenco C et al. (2001) Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Arch 442:64–72

    Article  PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, et al. (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011

    PubMed  CAS  Google Scholar 

  • Loewenstein WR (1959) The generation of electric activity in a nerve ending. Ann NY Acad Sci 81:367–387

    Article  PubMed  CAS  Google Scholar 

  • Luchetti R, Schoenhuber R, De Cicco G et al. (1989) Carpal-tunnel pressure. Acta Orthop Scand 60:397–399

    Article  PubMed  CAS  Google Scholar 

  • Maguire G, Connaughton V, Prat AG et al. (1998) Actin cytoskeleton regulates ion channel activity in retinal neurons. Neuroreport 9:665–670

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Fosset M, Lesage F, et al. (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lesage F et al. (2000) Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, et al. (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Mintenig GM, Sanchez-Vives MV, Martin C, et al. (1995) Sensory receptors in the anterior uvea of the cat’s eye. Invest Ophthalmol Vis Sci 36:1615–1624

    PubMed  CAS  Google Scholar 

  • Mitchell CH. Fleischhauer JC, Stamer D, et al. (2002) Human trabecular meshwork cell volume regulation. Am J Physiol Cell Physiol 283:C315–C326

    PubMed  CAS  Google Scholar 

  • Mitton KP, Tumminia SJ, Arora J, et al. (1997) Transient loss of alpha B-crystallin: an early cellular response to mechanical stretch. Biochem Biophys Res Commun 235:69–73

    Article  PubMed  CAS  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113:93–107

    Article  PubMed  CAS  Google Scholar 

  • Okisaka S, Murakami A, Mizukawa A, et al. (1997) Apoptosis in retinal ganglion cell decrease in human glaucomatous eyes. Jpn J Ophthalmol 41:84–88

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Maingret F, et al. (1998)A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–290

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Lazdunski M, Honore E (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol 13:422–428

    Article  PubMed  CAS  Google Scholar 

  • Puro DG (1991) Stretch-activated channels in human retinal Muller cells. Glia 4:456–460

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Nickells RW, Kerrigan LA, et al. (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774

    PubMed  CAS  Google Scholar 

  • Reyes R, Lauritzen I, Lesage F, et al. (2000) Immunolocalization of the arachidonic acid and mechanosensitive baseline traak potassium channel in the nervous system. Neuroscience 95:893–901

    Article  PubMed  CAS  Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46:12–16

    PubMed  CAS  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353

    PubMed  CAS  Google Scholar 

  • Small DL, Morris CE (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol 267:C598–C606

    PubMed  CAS  Google Scholar 

  • Soto D, Comes N, Ferrer E, et al. (2004) Modulation of aqueous humor outflow by ionic mechanisms involved in trabecular meshwork cell volume regulation. Invest Ophthalmol Vis Sci 45:3650–3661

    Article  PubMed  Google Scholar 

  • Srinivas SP, Maertens C, Goon LH, et al. (2004) Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp Eye Res 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, et al. (1994) A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368:265–268

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, et al. (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633–657

    Article  PubMed  CAS  Google Scholar 

  • Szabo RM, Chidgey LK (1989) Stress carpal tunnel pressures in patients with carpal tunnel syndrome and normal patients. J Hand Surg [Am] 14:624–627

    Article  CAS  Google Scholar 

  • Takahashi A, Gotoh H (2000) Mechanosensitive whole-cell currents in cultured rat somatosensory neurons. Brain Res 869:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Terasaki M, Miyake K, McNeil PL (1997) Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J Cell Biol 139:63–74

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire C, Lauritzen I, Lesage F et al. (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89:336–342

    Article  PubMed  CAS  Google Scholar 

  • Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in co-cultured retinal ganglion cells. J Neurosci 20:8693–8700

    PubMed  CAS  Google Scholar 

  • Tumminia SJ, Mitton KP, Arora J, et al. (1998) Mechanical stretch alters the actin cytoskeleton network and signal transduction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 39:1361

    PubMed  CAS  Google Scholar 

  • Wan X, Juranka P, Morris CE (1999) Activation of mechanosensitive currents in traumatized membrane. Am J Physiol 276:C318–C327

    PubMed  CAS  Google Scholar 

  • Wax MB, Tezel G, Kobayashi S, et al. (2000) Responses of different cell lines from ocular tissues to elevated hydrostatic pressure. Br J Ophthalmol 84:423–428

    Article  PubMed  CAS  Google Scholar 

  • WuDunn D (2001) The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells. Curr Eye Res 22:394–397

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Neufeld AH, Zorn MB et al. (1993) Collagen type I mRNA levels in cultured human lamina cribrosa cells: effects of elevated hydrostatic pressure. Exp Eye Res 56:567–574

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hamill OP (2000) On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol 523:101–115

    Article  PubMed  CAS  Google Scholar 

  • Zoratti M, Petronilli V (1988) Ion-conducting channels in a gram-positive bacterium. FEBS Lett 240:105–109

    Article  PubMed  CAS  Google Scholar 

  • Zoratti M, Petronilli V, Szabo I (1990) Stretch-activated composite ion channels in Bacillus subtilis. Biochem Biophys Res Commun 168:443–450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tan, J.C., Coroneo, M.T. (2009). Are Stretch-Activated Channels an Ocular Barometer?. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_8

Download citation

Publish with us

Policies and ethics