Skip to main content

Osmoreceptors in Cochlear Outer Hair Cells

  • Chapter
Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

  • 1223 Accesses

Abstract

The mammalian outer hair cells (OHCs) are mechanical effectors of the cochlea. The slow motility of OHCs is considered to be a possible adaptive mechanism in the cochlea. It is suggested that passive calcium-independent slow motility induced by hyposmotic activation may have physiological or pathological significance even in normal or impaired hearing of cochlear origin. The cell swelling induced by hyposmotic stimulation has been shown to be accompanied by an increase of intracellular Ca2+ concentrations ([Ca2+]i) in OHCs. This [Ca2+]i increase may subsequently activate metabolic processes including phosphorylation in OHCs. Therefore, the ionic environment and the changes in osmolarity of the inner ear may affect the OHC motility, thereby varying the sensitivity of the inner ear to the sound. The functional expression of transient receptor potential vanilloid 4 (TRPV4) is involved in the hypotonic stimulation-induced Ca2+ influx in OHCs. It is suggested that TRPV4 may function as an osmo- and mechanosensory receptor in OHCs. Recent study showed that hyposmotic stimulation can induce nitric oxide (NO) production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism. Any disturbance in the homeostasis of inner ear fluids may therefore affect the functional properties of OHCs by NO via the activation of TRPV4, thereby influencing the delivery of auditory information. In this review, volume regulation in OHCs also will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern GP, Hsu SF, Jackson MB (1999) Direct action of nitric oxide on rat neurohypophysial K+ channels. J Physiol 520: 165–176.

    PubMed  CAS  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde M A (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279: 54062–54068.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cochlear basis of the cochlear amplifier. J Physiol 388: 323–347.

    PubMed  CAS  Google Scholar 

  • Becker D, Blasé C, Bereiter-Hahn J, Jendrach M (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118: 2435–2440.

    PubMed  CAS  Google Scholar 

  • Belantseva IA, Frolenkov GI, Wade JB, Mammano F, Kachar B (2000) Water permeability of cochlear outer hair cells: characterization and relationship to electromotility. J Neurosci 20: 8996–9003.

    Google Scholar 

  • Bourque CW, Oliet SH, Richard D (1994) Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15: 231–274.

    PubMed  CAS  Google Scholar 

  • Breer H, Shepherd GM (1993) Implications of the NO/cGMP system for olfaction. Trends Neurosci 1: 5–9

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227: 194–196.

    PubMed  CAS  Google Scholar 

  • Brundin L, Canlon B, Flock Ã… (1989) Sound induced motility of isolated cochlear outer hair cells is frequency selective. Nature 342: 814–816.

    PubMed  CAS  Google Scholar 

  • Brundin L, Russell I (1994) Tuned phasic and tonic motile responses of isolated outer hair cells to direct mechanical stimulation of the cell body. Hear Res 73: 35–45.

    PubMed  CAS  Google Scholar 

  • Canlon B, Brundin L (1991) Mechanically induced length changes of isolated outer hair cells are metabolically dependent. Hear Res 53: 7–16.

    PubMed  CAS  Google Scholar 

  • Chan E, Ulfendahl M (1999) Mechanically evoked shortening of outer hair cells isolated from the guinea pig organ of Corti. Hear Res 128: 166–174.

    PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated chanells. Nature 330: 66–68.

    PubMed  CAS  Google Scholar 

  • Clementi E, Meldolesi J (1997) The cross-talk between nitric oxide and Ca2+: a story with a complex past and a promising future. Trends Pharmacol Sci 18: 266–269.

    PubMed  CAS  Google Scholar 

  • Collmann C, Carlsson MA, Hansson BS, Nighorn A (2004) Odorant-evoked nitric oxide signals in the antennal lobe of Manduca Sexta. J Neurosci 24: 6070–6077.

    PubMed  CAS  Google Scholar 

  • Cudeiro J, Rivadulla C (1999) Sight and insight – on the physiological role of nitric oxide in the visual system. Trends Neurosci 22: 109–116.

    PubMed  CAS  Google Scholar 

  • Dallos P, Corey ME (1991) The role of outer hair cell motility in cochlear tuning. Curr Opin Neurobiol 1: 215–220.

    PubMed  CAS  Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12: 4575–4585.

    PubMed  CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539: 77–91.

    PubMed  CAS  Google Scholar 

  • Ding JP, Salvi RJ, Sachs F (1991) Stretch-activated ion channels in guinea pig outer hair cells. Hear Res 56: 19–28.

    PubMed  CAS  Google Scholar 

  • Dube L, Parent L, Save R (1990) Hypotonic shock activates a Max K+ channel in primary cultured proximal tubule cells. Am J Physiol 259: F348–F356.

    PubMed  CAS  Google Scholar 

  • Dulon D, Aran JM, Schacht J (1987) Osmotically induced motility of outer hair cells: implications for Meniere’s disease. Arch Otorhinolaryngol 244: 104–107.

    PubMed  CAS  Google Scholar 

  • Dulon D, Aran JM, Schacht J (1988) Potassium-depolarization induces motility of outer hair cells by an osmotic mechanism. Hear Res 32: 123–130.

    PubMed  CAS  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1990) Increasing intracellular free calcium induces circumferential contractions in isolated cochlear outer hair cells. J Neurosci 10: 1388–1397.

    PubMed  CAS  Google Scholar 

  • Dulon D, Schacht J (1992) Motility of cochlear outer hair cells. Am J Otol 13: 108–112.

    PubMed  CAS  Google Scholar 

  • Dulon D, Luo L, Zhang C, and Ryan AF (1998) Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci 10: 907–915.

    PubMed  CAS  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135: 1079–1095.

    PubMed  CAS  Google Scholar 

  • Foskett JK, Wong MM, Sue-A Quan G, Robertson MA (1994) Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells. J Exp Zool 268: 104–110.

    PubMed  CAS  Google Scholar 

  • Franz P, Hauser-Kronberger C, Bock P, Quint C, Baumgartner WD (1996) Localization of nitric oxide synthase I and III in the cochlea. Acta Otolaryngol 116: 726–731.

    PubMed  CAS  Google Scholar 

  • Gosepath K, Gath I, Maurer J, Pollock JS, Amedee R, Forstermann U, Mann W (1997) Characterization of nitric oxide synthase isoforms expressed in different structures of the guinea pig cochlea. Brain Res 747: 26–33.

    PubMed  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Dupre A, Rothstein A (1982) Volume-induced increase of anion permeability in human lymphocytes. J Gen Physiol 80: 801–823.

    PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22: 6408–6414.

    PubMed  CAS  Google Scholar 

  • Hafting T, Haug TM, Ellefsen S, Sand O (2006) Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y subtype. Acta Physiol 188: 21–31.

    CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81: 685–740.

    PubMed  CAS  Google Scholar 

  • Harada N, Ernst A, Zenner HP (1993a) Hyposmotic activation hyperpolarizes outer hair cell of guinea pig cochlea. Brain Res 613: 205–211.

    Google Scholar 

  • Harada N, Ernst A, Zenner HP (1993b) Volume regulation in guinea pig outer hair cells and the role of intracellular calcium. Acta Otolaryngol Suppl 500: 39–41.

    CAS  Google Scholar 

  • Harada N, Ernst A, Zenner HP (1994) Intracellular calcium changes by hyposmotic activation of cochlear outer hair cells in the guinea pig. Acta Otolaryngol 114: 510–515.

    PubMed  CAS  Google Scholar 

  • Hazama A, Okada Y (1988) Ca2+ sensitivity of volume-regulatory K+ and Cl− channels in cultured human epithelial cells. J Physiol 402: 687–702.

    PubMed  CAS  Google Scholar 

  • He DZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429: 766–770.

    PubMed  CAS  Google Scholar 

  • Heinrich U, Maurer J, Koesling D, Mann W, Forstermann U (2000) Immuno-electron microscopic localization of the alpha(1) and beta(1)-subunits of soluble guanylyl cyclase in the guinea pig organ of corti. Brain Res 885: 6–13.

    PubMed  CAS  Google Scholar 

  • Heinrich UR, Maurer J, Mann W (2004) Evidence for a possible NOS back-up system in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol 261: 121–128.

    PubMed  Google Scholar 

  • Hoffman EK, SimonsenLO, Lambert IH (1984) Volume-induced increase of K+ and Cl- permeabilities in Ehrlich tumor cells. Role of internal Ca2+. J Membrane Biol 78: 211–222.

    Google Scholar 

  • Horner KC (1991) Old theme and new reflections: hearing impairment associated with endolymphatic hydrops. Hear Res 52: 147–156.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448: 73–98.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Li MX, Jia M, Kachar B (1991) Stretch sensitivity of the lateral wall of the auditory outer hair cell from the guinea pig. Neurosci Lett 133: 171–174.

    PubMed  CAS  Google Scholar 

  • Jerry RA, Popel AS, Brownell WE (1995) Outer hair cell length changes in an external electric field. I. The role of intracellular electro-osmotically generated pressure gradients. J Acoust Soc Am 98: 2000–2010.

    PubMed  CAS  Google Scholar 

  • Jorgensen NK, Pedersen SF, Rasmussen HB, Grunnet M, Klaeke DA, Olesen SP (2003) Cell swelling activates cloned Ca2+-activated K+ channels: a role for the F-actin cytoskeleton. Biochim Biophys Acta 1615: 115–125.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Zhang M, Urrutia R, Kalinec G (2000) Rho GTPases mediate the regulation of cochlear outer hair cell motility by acetylcholine. J Biol Chem 275: 28000–28005.

    PubMed  CAS  Google Scholar 

  • Kawahara K, Ogawa A, Suzuki M (1991) Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am J Physiol 260: F27–F33.

    PubMed  CAS  Google Scholar 

  • Kimura C, Koyama T, Oike M, Ito Y (2000) Hypotonic stress-induced NO production in endothelium depends on endogenous ATP. Biochem Biophys Res Comm 274: 736–740.

    PubMed  CAS  Google Scholar 

  • Kimura C, Oike M, Ohnaka K, Nose Y, Ito Y (2004) Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. J Physiol 554: 721–730.

    PubMed  CAS  Google Scholar 

  • Klis SFL, Smoorenburg GF (1994) Osmotically induced pressure difference in the cochlea and its effect on cochlear potentials. Hear Res 75: 114–120.

    PubMed  CAS  Google Scholar 

  • Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273: 1709–1174.

    PubMed  Google Scholar 

  • Kong WJ, Guo CK, Zhang S, Zhang XW, Wang YJ, Li ZW (2006) Fast cholinergic efferent inhibition in guinea pig outer hair cells. Brain Res 1102: 103–108.

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998a) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306.

    CAS  Google Scholar 

  • Lang F, Bush GL, Volkl H (1998b) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8: 1–45.

    CAS  Google Scholar 

  • Lang F, Ritter M, Gamper N, Huber S, Fillon S, Tanneur V, Lepple-Wienhues A, Szabo I (2000) Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol Biochem 10: 417–428.

    PubMed  CAS  Google Scholar 

  • Li N, Sul JY, Haydon PG (2003) A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J Neurosci 23: 10302–10310.

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525–535.

    PubMed  CAS  Google Scholar 

  • Lin S, Fagan KA, Li KX, Shaul PW, Cooper DM, Rodman DM (2000) Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem 275: 17979–17985.

    PubMed  CAS  Google Scholar 

  • Ling BN, Webster CL, Eaton DC (1992) Eicosanoids modulate apical Ca2+-dependent K+ channels in cultured rabbit principal cells. Am J Physiol 263: F116–F126.

    PubMed  CAS  Google Scholar 

  • McCarty NA, O’Neil RG (1991) Calcium-dependent control of volume regulation in renal proximal tubule cells: Ι. Swelling-activated Ca2+ entry and release. J Membrane Biol 123: 149–160.

    CAS  Google Scholar 

  • Michel O, Hess A, Bloch W, Stennert E, Su J, Addicks K (1999) Localization of the NO/cGMP-pathway in the cochlea of guinea pigs. Hear Res 133: 1–9.

    PubMed  CAS  Google Scholar 

  • Mizuno O, Kobayashi S, Hirano K, Nishimura J, Kubo C, Kanaide H (2000) Stimulus-specific alteration of the relationship between cytosolic Ca2+ transients and nitric oxide production in endothelial cells ex vivo. Br J Pharmacol 130: 1140–1146.

    PubMed  CAS  Google Scholar 

  • Nilius B, Sehrer J, De Smet P, Van Driessche W, Droogmans G (1995) Volume regulation in a toad epithelial cell line: role of coactivation of K+ and Cl– channels. J Physiol 487: 367–378.

    PubMed  CAS  Google Scholar 

  • Oghalai JS, Zhao HB, Kutz JW, Brownell WE (2000) Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science 287: 658–661.

    PubMed  CAS  Google Scholar 

  • Okada Y, Hazama A, Yuan W (1990) Stretch-induced activation of Ca2+-permeable ion channels is involved in the volume regulation of hypotonically swollen epithelial cells. Neurosci Res Suppl 12: S5–S13.

    CAS  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaski K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532: 3–16.

    PubMed  CAS  Google Scholar 

  • Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26: 595–601.

    PubMed  CAS  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanical nature of TRPV channels. Pflugers Arch 451: 193–203.

    PubMed  CAS  Google Scholar 

  • Park, KP, Beck JS, Douglas IJ, and Brown PD (1994) Ca2+-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated cells from rat lacrimal gland. J Membr Biol 141: 193–201.

    PubMed  CAS  Google Scholar 

  • Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell M, Housley GD (2007) TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat. J Physiol 579: 101–113.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81: 1305–1352.

    PubMed  CAS  Google Scholar 

  • Salt AN (2004) Acute endolyphatic hydrops generated by exposure of the ear to nontraumatic low frequency tones. J Assoc Res Otolaryngol 5: 203–214.

    PubMed  Google Scholar 

  • Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35: 143–150.

    PubMed  CAS  Google Scholar 

  • Sheader EA, Brown PD, Best L (2001) Swelling-induced changes in cytosolic [Ca2+] in insulin-secreting cells: a role in regulatory volume decrease? Mol Cell Endocrinol 181: 179–187.

    PubMed  CAS  Google Scholar 

  • Shen J, Harada N, Yamashita T (2003) Nitric oxide inhibits adenosine 5’-triphophate-induced Ca2+ response in inner hair cells of the guinea pig cochlea. Neurosci Lett 337: 135–138.

    PubMed  CAS  Google Scholar 

  • Shen J, Harada N, Nakazawa H, Yamashita T (2005) Involvement of the nitric oxide/cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 21: 2912–2922.

    PubMed  Google Scholar 

  • Shen J, Harada N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T (2006a) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. Neuroreport 17: 135–139.

    CAS  Google Scholar 

  • Shen J, Harada N, Nakazawa H, Kaneko T, Izumikawa M, Yamashita T (2006b) Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea. Brain Res 1081: 101–112.

    CAS  Google Scholar 

  • Shi X, Ren T, Nuttall AL (2001) Nitric oxide distribution and production in the guinea pig cochlea. Hear Res 153: 23–31.

    PubMed  CAS  Google Scholar 

  • Shin JH, Chung S, Park EJ, Uhm DY, Suh CK (1997) Nitric oxide directly activates calcium-activated potassium channels from rat brain reconstituted into planar lipid bilayer. FEBS Lett 415: 299–302.

    PubMed  CAS  Google Scholar 

  • Skinner LJ, Eée V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran JM, Dulon D (2003) Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea. J Neurophysiol 90: 320–332.

    PubMed  CAS  Google Scholar 

  • Spreadbury IC, Kros CJ, Meech RW (2004) Effects of trypsin on large-conductance Ca2+-activated K+ channels of guinea-pig outer hair cells. Hear Res 190: 115–127.

    PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695–702.

    PubMed  CAS  Google Scholar 

  • Surin AM, Reimann-Philipp U, Fechter LD (2000) Simultaneous monitoring of slow cell motility and calcium signals of the guinea pig outer hair cells. Hear Res 146: 121–133.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kawahara K, Ogawa A, Morita T (1990) [Ca2+]i rises via G-protein during regulatory volume decrease in rabbit proximal tubule cell. Am J Physiol 258: F690–F696.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278: 22664–22668.

    PubMed  CAS  Google Scholar 

  • Sziklai I, Dallos P (1997) Hyposmotic swelling induces magnitude and gain change in the electromotile performamce of isolated outer hair cells. Acta Otolaryngol 117: 222–225.

    PubMed  CAS  Google Scholar 

  • Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T (2007) Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea. Hear Res 230: 93–104.

    PubMed  CAS  Google Scholar 

  • Takumida M, Anniko M, Popa R, Zhang DM (2000) Localization of soluble guanylate cyclase activity in the guinea pig inner ear. Acta Otolaryngol 120: 28–33.

    PubMed  CAS  Google Scholar 

  • Takumida M, Anniko M (2001) Detection of nitric oxide in the guinea pig inner ear, using a combination of aldehyde fixative and 4,5-diaminofluorescein diacetate. Acta Otolaryngol 121: 460–464.

    PubMed  CAS  Google Scholar 

  • Takumida M, Anniko M (2002) Nitric oxide in the inner ear. Curr Opin Neurol 15: 11–15.

    PubMed  Google Scholar 

  • Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125: 929–934.

    PubMed  Google Scholar 

  • Taniguchi J, Guggio WB (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K channels in thick ascending limb. Am J Physiol 257: F347–F352.

    PubMed  CAS  Google Scholar 

  • Tinel H, Kinne-Saffiran E, Kinne RK (2000) Calcium signalling during RVD of kidney cells. Cell Physiol Biochem 10: 297–302.

    PubMed  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflugers Arch 412: 551–553.

    PubMed  CAS  Google Scholar 

  • Vázquez E, Nobles M, and Valverde MA (2001) Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels. Proc Natl Acad Sci USA 98: 5329–5334.

    PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101: 396–401.

    PubMed  CAS  Google Scholar 

  • Wang Y, Shin WS, Kawaguchi H, Inukai M, Kato M, Sakamoto A, Uehara Y, Miyamoto M, Shimamoto N, Korenaga R, Ando J Toyo-oka T (1996) Contribution of sustained Ca2+ elevation for nitric oxide production in endothelial cells and subsequent modulation of Ca2+ transient in vascular smooth muscle cells in coculture. J Biol Chem 271: 5647–5655.

    PubMed  CAS  Google Scholar 

  • Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. Neurochem 68: 443–456.

    Article  CAS  Google Scholar 

  • Wang J, Morishima S, Okada Y (2003a) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol 284: C77–C84.

    CAS  Google Scholar 

  • Wang GY, Liets LC, Chalupa LM (2003b) Nitric oxide differentially modulates ON and OFF responses of retinal ganglion cells. J Neurophysiol 90: 1304–1313.

    CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277: 13569–13577.

    PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434–438.

    PubMed  CAS  Google Scholar 

  • Weiss H, Lang F (1988) Ion channels activated by swelling of Madin Darby canine kidney (MDCK) cells. J Membr Biol 126: 109–114.

    Google Scholar 

  • Welling PA, O’Neil RG (1990) Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule. Am J Physiol 258: F951–F962.

    PubMed  CAS  Google Scholar 

  • Weskamp, M, Seidl W, and Grissmer S (2000) Characterization of the increase in [Ca2+]i during hypotonic shock and the involvement of Ca2+-activated K+ channels in the regulatory volume decrease in human osteoblast-like cells. J Membr Biol 178: 11–20.

    PubMed  CAS  Google Scholar 

  • Yukawa H, Shen J, Harada N, Cho-Tamaoka H, Yamashita T (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 130: 485–496.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 18: 127–133.

    PubMed  CAS  Google Scholar 

  • Zenner HP (1986) Motile reponses in outer hair cells. Hear Res 22: 83–90.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Zimmermann U, Gitter AH (1987) Fast motility of isolated mammalian auditory sensory cells. Biochem Biophys Res Commun 149: 304–308.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Ernst A (1993) Cochlear-motor, transduction and signal-transfer tinnitus: models for three types of cochlear tinnitus. Eur Arch Otorhinolaryngol 249: 447–454.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Reuter G, Zimmermann U, Gitter AH, Fermin C, LePage EL (1994) Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells. Eur. Arch. Otorhinolaryngol. 251: 143–153.

    PubMed  CAS  Google Scholar 

  • Zsombok A, Schrofner S, Hermann A, Kerschbaum HH, (2000) Nitric oxide increases excitability by depressing a calcium activated potassium channels in snail neurons. Neurosci Lett 295: 85–88.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Harada, N. (2009). Osmoreceptors in Cochlear Outer Hair Cells. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_7

Download citation

Publish with us

Policies and ethics