Skip to main content

Functional Electrical Stimulation and Rehabilitation Applications of BCIs

  • Chapter
Brain-Computer Interfaces
  • 1345 Accesses

Functional Electrical Stimulation (FES) is the controlled application of electrical current to the peripheral nerves for the purpose of generating useful muscle contractions in people with nervous system dysfunction. Over the last several decades, many different applications of FES technology have been developed (Figure 6.1), and these can be divided into two main categories. The first category includes those systems that save lives by restoring essential autonomic functions. Probably the most well-known and widespread example of commercial FES technology is the cardiac pacemakers used to reliably activate heart muscles in people with damage to the neural circuitry of the heart. Other commercial technologies, such as the VocareĀ® system, are used to restore bladder function after spinal cord injury. FES diaphragm-pacing systems have the potential to eliminate need for a ventilator in severely paralyzed individuals. Also, methods to stimulate nerves that coordinate breathing and swallowing reflex pathways are being developed to treat sleep apnea or to facilitate swallowing after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Carmena, J.M., M.A. Lebedev et al. 2003. Learning to control a brain-machine interface for reaching and grasping by primates. Public Library Sci. 1(2):1ā€“16.

    Google ScholarĀ 

  • Creasey, G.H., C.H. Ho, et al. 2004. Clinical applications of electrical stimulation after spinal cord injury. J. Spinal Cord Med. 27(4):365ā€“375.

    Google ScholarĀ 

  • Hochberg, L.R., M.D. Serruya, G.M. Friehs et al. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164ā€“171.

    ArticleĀ  Google ScholarĀ 

  • Jackson, A., C.T. Moritz, J. Mavoori, T.H. Lucas, and E.E. Fetz. 2005. The Neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans. Neural Syst. Rehab. Eng. 14(2):187ā€“190.

    ArticleĀ  Google ScholarĀ 

  • Kennedy, P.R., R.A.E. Bakay et al. 2000. Direct control of a computer from the human central nervous system. IEEE Trans. Rehab. Eng. 8(2):198ā€“202.

    ArticleĀ  Google ScholarĀ 

  • Morrow, M.M. and L.E. Miller. 2003. Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. J. Neurophysiol. 89(4):2279ā€“2288.

    ArticleĀ  Google ScholarĀ 

  • Muller-Putz, G., R. Scherer et al. 2005. EEG-based neuroprosthesis control: A step towards clinical practice. Neurosci. Lett. 382:169ā€“174.

    ArticleĀ  Google ScholarĀ 

  • Musallam, S., B.D. Corneil et al. 2004. Cognitive control signals for neural prosthetics. Science 305:258ā€“262.

    ArticleĀ  Google ScholarĀ 

  • Peckham, P.H., M.W. Keith et al. 2001. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehab. 82(10):1380ā€“1388.

    ArticleĀ  Google ScholarĀ 

  • Pfurtscheller, G., G.R. Muller et al. 2003. ā€œThoughtā€ā€”control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 351:33ā€“36.

    ArticleĀ  Google ScholarĀ 

  • Serruya, M.D., N.G. Hatsopoulos et al. 2002. Instant neural control of a movement signal. Nature 416(6877):141ā€“142.

    ArticleĀ  Google ScholarĀ 

  • Santhanam, G., S.I. Ryu, B.M. Yu, A. Afshar, and K.V. Shenoy. 2006. A high-performance brain-computer interface. Nature 442:195ā€“198.

    ArticleĀ  Google ScholarĀ 

  • Taylor, D.M., S.I.H. Tillery, et al. 2002a. Direct cortical control of 3D neuroprosthetic devices. Science 296:1829ā€“1832.

    ArticleĀ  Google ScholarĀ 

  • Taylor, D.M., S.I.H. Tillery et al. 2003. Information conveyed through brain-control: cursor versus robot. IEEE Trans. Neural Syst. Rehab. Eng. 11(2):195ā€“199.

    ArticleĀ  Google ScholarĀ 

  • Taylor, P., J. Esnouf, et al. 2002b. The functional impact of the Freehand System on tetraplegic hand function, clinical results. Spinal Cord 40(11):560ā€“566.

    ArticleĀ  Google ScholarĀ 

  • Wessberg, J., C.R. Stambaugh et al. 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361ā€“365.

    ArticleĀ  Google ScholarĀ 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Taylor, D.M. (2008). Functional Electrical Stimulation and Rehabilitation Applications of BCIs. In: Brain-Computer Interfaces. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8705-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8705-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8704-2

  • Online ISBN: 978-1-4020-8705-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics