The Biotic-Abiotic Interface

  • Patrick A. Tresco
  • Greg A. Gerhardt

Brain-computer interfaces (BCI), or brain-machine interfaces (BMI), are systems designed to aid humans with central nervous system disabilities, including disabilities in movement, communication, and independent control of one’s environment (Donoghue, 2002; Friehs et al., 2004; Lebedev and Nicolelis, 2006; Schwartz et al., 2006). Although these same approaches have the potential to augment normal function, as currently envisioned this new class of biomedical devices is being developed to help those with disabilities. As such, these devices may be useful for patients suffering from a variety of conditions including spinal cord injury, musculodegenerative diseases, stroke, amyotrophic lateral sclerosis, or other neurological or neuromuscular diseases. The intent of these devices and their associated components is to provide or supplement motor or sensory function that has been lost. The theoretical basis for such devices lies in our ability to detect neural signals and translate volitional commands into control signals for external devices including computers, robotics, or other machines. The acquisition of neural signals has traditionally occurred in the cerebral cortex, and the recording of these signals from implanted electrodes has a fairly extensive history.

Keywords

Europe Respiration Tungsten Dexamethasone Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babb, T.L. and W. Kupfer. 1984. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes, Exp. Neurol. 86(2):171–182.CrossRefGoogle Scholar
  2. Bickford, R.G., G. Fischer, and G.P. Sayre. 1957. Histologic changes in the cat's brain after introduction of metallic and plastic coated wire used in electro-encephalography. Mayo Clin. Proc. 32(1):14–21.Google Scholar
  3. Biran, R., D.C. Martin, and P.A. Tresco. 2007. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. Part A82A(1):169–178.CrossRefGoogle Scholar
  4. Biran, R., D.C. Martin, and P.A. Tresco. 2005. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1):115–126.CrossRefGoogle Scholar
  5. Bjornsson, C.S., S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, K.L. Smith, J.N. Turner, S. De, B. Roysam, W. Shain, and S.J. Kim. 2006. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3(3):196–207.CrossRefGoogle Scholar
  6. Burns, B.D., J.P. Stean, and A.C. Webb. 1974. Recording for several days from single cortical neurons in completely unrestrained cats. Electroencephalogr. Clin. Neurophysiol. 36(3): 314–318.Google Scholar
  7. Buzsaki, G., and A. Kandel. 1998. Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79(3):1587–1591.Google Scholar
  8. Collias, J.C., and E.E. Manuelidis. 1957. Histopathological changes produced by implanted electrodes in cat brains; Comparison with histopathological changes in human and experimental puncture wounds. J. Neurosurg. 14(3):302–328.CrossRefGoogle Scholar
  9. Cui, X., V.A. Lee, Y. Raphael, J.A. Wiler, J.F. Hetke, D.J. Anderson, and D.C. Martin. 2001. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56(2):261–272.CrossRefGoogle Scholar
  10. Cui, X., J. Wiler, M. Dzaman, R.A. Altschuler, and D.C. Martin. 2003. In vivostudies of polypyrrole/peptide coated neural probes. Biomaterials24(5):777–787.CrossRefGoogle Scholar
  11. Donoghue, J.P. 2002. Connecting cortex to machines: Recent advances in brain interfaces. Nature Neurosci. 5:1085–1088.CrossRefGoogle Scholar
  12. Dymond, A.M., L.E. Kaechele, J.M. Jurist, and P.H. Crandall. 1970. Brain tissue reaction to some chronically implanted metals. J. Neurosurg. 33(5):574–580.CrossRefGoogle Scholar
  13. Edell, D.J., V.V. Toi, V.M. McNeil, and L.D. Clark. 1992. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39(6):635–643.CrossRefGoogle Scholar
  14. Friehs, G.M., V.A. Zerris, C.L. Ojakangas, M.R. Fellows, and J.P. Donoghue. 2004. Brainmachine and brain-computer interfaces. Stroke35(11 Suppl 1):2702–2705.CrossRefGoogle Scholar
  15. He, W. and R.V. Bellamkonda. 2005. Nanoscale neurointegrative coatings for neural implants. Biomaterials26(16):2983–2990.CrossRefGoogle Scholar
  16. He, W., G.C. McConnell, and R.V. Bellamkonda. 2006. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3(4):316–326.CrossRefGoogle Scholar
  17. Hendriks, J.J., C.E. Teunissen, H.E. de Vries, and C.D. Dijkstra. 2005. Macrophages and neurodegeneration. Brain Res. Brain Res. Rev. 48(2):185–195.CrossRefGoogle Scholar
  18. Henze, D.A., Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, and G. Buzsaki. 2000. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1):390–400.Google Scholar
  19. Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature442(7099):164–171.CrossRefGoogle Scholar
  20. Hoogerwerf, A.C. and K.D. Wise. 1994. A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12):1136–1146.CrossRefGoogle Scholar
  21. Kennedy, P.R., R.A. Bakay, M.M. Moore, K. Adams, and J. Goldwaithe. 2000. Direct control of a computer from the human central nervous system. IEEE Trans. Rehab. Eng. 8(2):198–202.CrossRefGoogle Scholar
  22. Kim, D.H. and D.C. Martin. 2006. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials27(15):3031–3037.CrossRefGoogle Scholar
  23. Kralik, J.D., D.F. Dimitrov, D.J. Krupa, D.B. Katz, D. Cohen, and M.A. Nicolelis. 2001. Techniques for long-term multisite neuronal ensemble recordings in behaving animals. Methods25(2):121–150.CrossRefGoogle Scholar
  24. Lebedev, M.A. and M.A. Nicolelis. 2006. Brain-machine interfaces: past, present and future, Trends Neurosci. 29(9):536–546.CrossRefGoogle Scholar
  25. Lee, H., R.V. Bellamkonda, W. Sun, and M.E. Levenston. 2005a. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2(4):81–89.CrossRefGoogle Scholar
  26. Lee, I.H., E. Lindqvist, O. Kiehn, J. Widenfalk, and L. Olson. 2005b. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J. Comp. Neurol. 489(1):1–10.CrossRefGoogle Scholar
  27. Liu, X., D.B. McCreery, R.R. Carter, L.A. Bullara, T.G. Yuen, and W.F. Agnew. 1999. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans. Rehab. Eng. 7(3):315–326.CrossRefGoogle Scholar
  28. Ludwig, K.A., J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke. 2006. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3(1):59–70.CrossRefGoogle Scholar
  29. Merrill, D.R. and P.A. Tresco. 2005. Impedance characterization of microarray recording electrodes in vitro. IEEE Trans. Biomed. Eng. 52(11):1960–1965.CrossRefGoogle Scholar
  30. Mountcastle, V.B., P.W. Davies, and A.L. Berman. 1957. Response properties of neurons of cat's somatic cortex to peripheral stiumuli. J. Neurophysiol. 20(4):374–407.Google Scholar
  31. Musallam, S., M.J. Bak, P.R. Troyk, and R.A. Andersen. 2007. A floating metal microelectrode array for chronic implantation. J. Neurosci. Meth. 160(1):122–127.CrossRefGoogle Scholar
  32. Musallam, S., B.D. Corneil, B. Greger, H. Scherberger, and R.A. Andersen. 2004. Cognitive control signals for neural prosthetics. Science305(5681):258–262.CrossRefGoogle Scholar
  33. Nagy, J.I. and J.E. Rash. 2000. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res. Brain Res. Rev. 32(1):29–44.CrossRefGoogle Scholar
  34. Nicolelis, M.A., D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, and S.P. Wise. 2003. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA100(19):11041–11046.CrossRefGoogle Scholar
  35. Polikov, V.S., P.A. Tresco, and W.M. Reichert. 2005. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Meth. 148(1):1–18.CrossRefGoogle Scholar
  36. Rall, W. 1962. Electrophysiology of a dendritic neuron model. Biophys. J. 2(2pt2):145–167.CrossRefGoogle Scholar
  37. Rennaker, R.L., S. Street, A.M. Ruyle, and A.M. Sloan. 2005. A comparison of chronic multichannel cortical implantation techniques: manual versus mechanical insertion. J. Neurosci. Meth. 142(2):169–176.CrossRefGoogle Scholar
  38. Robinson, F.R. and H.T. Johnson. 1961. Histopatholgical studies of tissue reactions to various metals implanted in cat brains. ASD Technical Report61–397, Wright-Patterson Air Force Base, Ohio, 1–16.Google Scholar
  39. Rousche, P.J. and R.A. Normann. 1998. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Meth. 82(1):1–15.CrossRefGoogle Scholar
  40. Rousche, P.J., D.S. Pellinen, D.P. Pivin, Jr., J.C. Williams, R.J. Vetter, and D.R. Kipke. 2001. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3):361–371.CrossRefGoogle Scholar
  41. Santhanam, G., S.I. Ryu, B.M. Yu, A. Afshar, and K.V. Shenoy. 2006. A high-performance brain-computer interface. Nature442(7099):195–198.CrossRefGoogle Scholar
  42. Schmidt, E.M. 1980. Single neuron recording from motor cortex as a possible source of signals for control of external devices. Ann. Biomed. Eng. 8(4–6):339–349.CrossRefGoogle Scholar
  43. Schmidt, E.M., M.J. Bak, and J.S. McIntosh. 1976. Long-term chronic recording from cortical neurons. Exp. Neurol. 52(3):496–506.CrossRefGoogle Scholar
  44. Schmidt, S., K. Horch, and R. Normann. 1993. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater. Res. 27(11):1393–1399.CrossRefGoogle Scholar
  45. Schultz, R.L and T.J. Willey. 1976. The ultrastructure of the sheath around chronically implanted electrodes in brain. J. Neurocytol. 5(6):621–642.CrossRefGoogle Scholar
  46. Schwartz, A.B., X.T. Cui, D.J. Weber, and D.W. Moran. 2006. Brain-controlled interfaces:movement restoration with neural prosthetics. Neuron52(1):205–220.CrossRefGoogle Scholar
  47. Serruya, M.D., N.G. Hatsopoulos, L. Paninski, M.R. Fellows, and J.P. Donoghue. 2002. Instant neural control of a movement signal. Nature416(6877):141–142.CrossRefGoogle Scholar
  48. Seymour, J. and D.R. Kipke. 2006. Ultra-fine structures on neural probes reduce cellular encapsulation. Soc. Neurosci. Annu. Meet. 354:16.Google Scholar
  49. Stensaas, S.S. and L.J. Stensaas. 1978. Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol. (Berl) 41(2):145–155.CrossRefGoogle Scholar
  50. Stensaas, S.S. and L.J. Stensaas. 1976. The reaction of the cerebral cortex to chronically implanted plastic needles, Acta Neuropathol. (Berl) 35(3):187–203.Google Scholar
  51. Subbaroyan, J., D.C. Martin, and D.R. Kipke. 2005. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2(4):103–113.CrossRefGoogle Scholar
  52. Subbaroyan, J., T.D.K. Yoshida, and D.R. Kipke. 2006. Chronic tissue response evoked by variably flexible intracortical polymer implant systems. Atlanta, GA: Society for Neuroscience Abstracts. Sykova, E. 2005. Glia and volume transmission during physiological and pathological states, J. Neural Transm. 112(1):137–147.Google Scholar
  53. Szarowski, D.H., M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain. 2003. Brain responses to micro-machined silicon devices. Brain Res. 983(1–2):23–35.CrossRefGoogle Scholar
  54. Taylor, D.M., S.I. Tillery, and A.B. Schwartz. 2002. Direct cortical control of 3D neuroprosthetic devices. Science296(5574):1829–1832.CrossRefGoogle Scholar
  55. Turner, J.N., W. Shain, D.H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead. 1999. Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 156(1):33–49.CrossRefGoogle Scholar
  56. Wessberg, J., C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S.J. Biggs, M.A. Srinivasan, and M.A. Nicolelis. 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature408(6810):361–365.CrossRefGoogle Scholar
  57. Williams, J.C., R.L. Rennaker, and D.R. Kipke. 1999. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Brain Res. Protoc. 4(3):303–313.CrossRefGoogle Scholar
  58. Yuen, T.G. and W.F. Agnew. 1995. Histological evaluation of polyesterimide-insulated gold wires in brain. Biomaterials16(12):951–956.CrossRefGoogle Scholar
  59. Zhong, Y. and R.V. Bellamkonda. 2005. Controlled release of antiinflammatory agent alphaMSH from neural implants. J. Control Rel. 106(3):309–318.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Patrick A. Tresco
    • Greg A. Gerhardt

      There are no affiliations available

      Personalised recommendations