Skip to main content

The Biotic-Abiotic Interface

  • Chapter
Brain-Computer Interfaces

Brain-computer interfaces (BCI), or brain-machine interfaces (BMI), are systems designed to aid humans with central nervous system disabilities, including disabilities in movement, communication, and independent control of one’s environment (Donoghue, 2002; Friehs et al., 2004; Lebedev and Nicolelis, 2006; Schwartz et al., 2006). Although these same approaches have the potential to augment normal function, as currently envisioned this new class of biomedical devices is being developed to help those with disabilities. As such, these devices may be useful for patients suffering from a variety of conditions including spinal cord injury, musculodegenerative diseases, stroke, amyotrophic lateral sclerosis, or other neurological or neuromuscular diseases. The intent of these devices and their associated components is to provide or supplement motor or sensory function that has been lost. The theoretical basis for such devices lies in our ability to detect neural signals and translate volitional commands into control signals for external devices including computers, robotics, or other machines. The acquisition of neural signals has traditionally occurred in the cerebral cortex, and the recording of these signals from implanted electrodes has a fairly extensive history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babb, T.L. and W. Kupfer. 1984. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes, Exp. Neurol. 86(2):171–182.

    Article  Google Scholar 

  • Bickford, R.G., G. Fischer, and G.P. Sayre. 1957. Histologic changes in the cat's brain after introduction of metallic and plastic coated wire used in electro-encephalography. Mayo Clin. Proc. 32(1):14–21.

    Google Scholar 

  • Biran, R., D.C. Martin, and P.A. Tresco. 2007. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. Part A82A(1):169–178.

    Article  Google Scholar 

  • Biran, R., D.C. Martin, and P.A. Tresco. 2005. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1):115–126.

    Article  Google Scholar 

  • Bjornsson, C.S., S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, K.L. Smith, J.N. Turner, S. De, B. Roysam, W. Shain, and S.J. Kim. 2006. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3(3):196–207.

    Article  Google Scholar 

  • Burns, B.D., J.P. Stean, and A.C. Webb. 1974. Recording for several days from single cortical neurons in completely unrestrained cats. Electroencephalogr. Clin. Neurophysiol. 36(3): 314–318.

    Google Scholar 

  • Buzsaki, G., and A. Kandel. 1998. Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79(3):1587–1591.

    Google Scholar 

  • Collias, J.C., and E.E. Manuelidis. 1957. Histopathological changes produced by implanted electrodes in cat brains; Comparison with histopathological changes in human and experimental puncture wounds. J. Neurosurg. 14(3):302–328.

    Article  Google Scholar 

  • Cui, X., V.A. Lee, Y. Raphael, J.A. Wiler, J.F. Hetke, D.J. Anderson, and D.C. Martin. 2001. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56(2):261–272.

    Article  Google Scholar 

  • Cui, X., J. Wiler, M. Dzaman, R.A. Altschuler, and D.C. Martin. 2003. In vivostudies of polypyrrole/peptide coated neural probes. Biomaterials24(5):777–787.

    Article  Google Scholar 

  • Donoghue, J.P. 2002. Connecting cortex to machines: Recent advances in brain interfaces. Nature Neurosci. 5:1085–1088.

    Article  Google Scholar 

  • Dymond, A.M., L.E. Kaechele, J.M. Jurist, and P.H. Crandall. 1970. Brain tissue reaction to some chronically implanted metals. J. Neurosurg. 33(5):574–580.

    Article  Google Scholar 

  • Edell, D.J., V.V. Toi, V.M. McNeil, and L.D. Clark. 1992. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39(6):635–643.

    Article  Google Scholar 

  • Friehs, G.M., V.A. Zerris, C.L. Ojakangas, M.R. Fellows, and J.P. Donoghue. 2004. Brainmachine and brain-computer interfaces. Stroke35(11 Suppl 1):2702–2705.

    Article  Google Scholar 

  • He, W. and R.V. Bellamkonda. 2005. Nanoscale neurointegrative coatings for neural implants. Biomaterials26(16):2983–2990.

    Article  Google Scholar 

  • He, W., G.C. McConnell, and R.V. Bellamkonda. 2006. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3(4):316–326.

    Article  Google Scholar 

  • Hendriks, J.J., C.E. Teunissen, H.E. de Vries, and C.D. Dijkstra. 2005. Macrophages and neurodegeneration. Brain Res. Brain Res. Rev. 48(2):185–195.

    Article  Google Scholar 

  • Henze, D.A., Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, and G. Buzsaki. 2000. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84(1):390–400.

    Google Scholar 

  • Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature442(7099):164–171.

    Article  Google Scholar 

  • Hoogerwerf, A.C. and K.D. Wise. 1994. A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12):1136–1146.

    Article  Google Scholar 

  • Kennedy, P.R., R.A. Bakay, M.M. Moore, K. Adams, and J. Goldwaithe. 2000. Direct control of a computer from the human central nervous system. IEEE Trans. Rehab. Eng. 8(2):198–202.

    Article  Google Scholar 

  • Kim, D.H. and D.C. Martin. 2006. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials27(15):3031–3037.

    Article  Google Scholar 

  • Kralik, J.D., D.F. Dimitrov, D.J. Krupa, D.B. Katz, D. Cohen, and M.A. Nicolelis. 2001. Techniques for long-term multisite neuronal ensemble recordings in behaving animals. Methods25(2):121–150.

    Article  Google Scholar 

  • Lebedev, M.A. and M.A. Nicolelis. 2006. Brain-machine interfaces: past, present and future, Trends Neurosci. 29(9):536–546.

    Article  Google Scholar 

  • Lee, H., R.V. Bellamkonda, W. Sun, and M.E. Levenston. 2005a. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2(4):81–89.

    Article  Google Scholar 

  • Lee, I.H., E. Lindqvist, O. Kiehn, J. Widenfalk, and L. Olson. 2005b. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J. Comp. Neurol. 489(1):1–10.

    Article  Google Scholar 

  • Liu, X., D.B. McCreery, R.R. Carter, L.A. Bullara, T.G. Yuen, and W.F. Agnew. 1999. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans. Rehab. Eng. 7(3):315–326.

    Article  Google Scholar 

  • Ludwig, K.A., J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke. 2006. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3(1):59–70.

    Article  Google Scholar 

  • Merrill, D.R. and P.A. Tresco. 2005. Impedance characterization of microarray recording electrodes in vitro. IEEE Trans. Biomed. Eng. 52(11):1960–1965.

    Article  Google Scholar 

  • Mountcastle, V.B., P.W. Davies, and A.L. Berman. 1957. Response properties of neurons of cat's somatic cortex to peripheral stiumuli. J. Neurophysiol. 20(4):374–407.

    Google Scholar 

  • Musallam, S., M.J. Bak, P.R. Troyk, and R.A. Andersen. 2007. A floating metal microelectrode array for chronic implantation. J. Neurosci. Meth. 160(1):122–127.

    Article  Google Scholar 

  • Musallam, S., B.D. Corneil, B. Greger, H. Scherberger, and R.A. Andersen. 2004. Cognitive control signals for neural prosthetics. Science305(5681):258–262.

    Article  Google Scholar 

  • Nagy, J.I. and J.E. Rash. 2000. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res. Brain Res. Rev. 32(1):29–44.

    Article  Google Scholar 

  • Nicolelis, M.A., D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, and S.P. Wise. 2003. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA100(19):11041–11046.

    Article  Google Scholar 

  • Polikov, V.S., P.A. Tresco, and W.M. Reichert. 2005. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Meth. 148(1):1–18.

    Article  Google Scholar 

  • Rall, W. 1962. Electrophysiology of a dendritic neuron model. Biophys. J. 2(2pt2):145–167.

    Article  Google Scholar 

  • Rennaker, R.L., S. Street, A.M. Ruyle, and A.M. Sloan. 2005. A comparison of chronic multichannel cortical implantation techniques: manual versus mechanical insertion. J. Neurosci. Meth. 142(2):169–176.

    Article  Google Scholar 

  • Robinson, F.R. and H.T. Johnson. 1961. Histopatholgical studies of tissue reactions to various metals implanted in cat brains. ASD Technical Report61–397, Wright-Patterson Air Force Base, Ohio, 1–16.

    Google Scholar 

  • Rousche, P.J. and R.A. Normann. 1998. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Meth. 82(1):1–15.

    Article  Google Scholar 

  • Rousche, P.J., D.S. Pellinen, D.P. Pivin, Jr., J.C. Williams, R.J. Vetter, and D.R. Kipke. 2001. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3):361–371.

    Article  Google Scholar 

  • Santhanam, G., S.I. Ryu, B.M. Yu, A. Afshar, and K.V. Shenoy. 2006. A high-performance brain-computer interface. Nature442(7099):195–198.

    Article  Google Scholar 

  • Schmidt, E.M. 1980. Single neuron recording from motor cortex as a possible source of signals for control of external devices. Ann. Biomed. Eng. 8(4–6):339–349.

    Article  Google Scholar 

  • Schmidt, E.M., M.J. Bak, and J.S. McIntosh. 1976. Long-term chronic recording from cortical neurons. Exp. Neurol. 52(3):496–506.

    Article  Google Scholar 

  • Schmidt, S., K. Horch, and R. Normann. 1993. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater. Res. 27(11):1393–1399.

    Article  Google Scholar 

  • Schultz, R.L and T.J. Willey. 1976. The ultrastructure of the sheath around chronically implanted electrodes in brain. J. Neurocytol. 5(6):621–642.

    Article  Google Scholar 

  • Schwartz, A.B., X.T. Cui, D.J. Weber, and D.W. Moran. 2006. Brain-controlled interfaces:movement restoration with neural prosthetics. Neuron52(1):205–220.

    Article  Google Scholar 

  • Serruya, M.D., N.G. Hatsopoulos, L. Paninski, M.R. Fellows, and J.P. Donoghue. 2002. Instant neural control of a movement signal. Nature416(6877):141–142.

    Article  Google Scholar 

  • Seymour, J. and D.R. Kipke. 2006. Ultra-fine structures on neural probes reduce cellular encapsulation. Soc. Neurosci. Annu. Meet. 354:16.

    Google Scholar 

  • Stensaas, S.S. and L.J. Stensaas. 1978. Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol. (Berl) 41(2):145–155.

    Article  Google Scholar 

  • Stensaas, S.S. and L.J. Stensaas. 1976. The reaction of the cerebral cortex to chronically implanted plastic needles, Acta Neuropathol. (Berl) 35(3):187–203.

    Google Scholar 

  • Subbaroyan, J., D.C. Martin, and D.R. Kipke. 2005. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2(4):103–113.

    Article  Google Scholar 

  • Subbaroyan, J., T.D.K. Yoshida, and D.R. Kipke. 2006. Chronic tissue response evoked by variably flexible intracortical polymer implant systems. Atlanta, GA: Society for Neuroscience Abstracts. Sykova, E. 2005. Glia and volume transmission during physiological and pathological states, J. Neural Transm. 112(1):137–147.

    Google Scholar 

  • Szarowski, D.H., M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain. 2003. Brain responses to micro-machined silicon devices. Brain Res. 983(1–2):23–35.

    Article  Google Scholar 

  • Taylor, D.M., S.I. Tillery, and A.B. Schwartz. 2002. Direct cortical control of 3D neuroprosthetic devices. Science296(5574):1829–1832.

    Article  Google Scholar 

  • Turner, J.N., W. Shain, D.H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead. 1999. Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 156(1):33–49.

    Article  Google Scholar 

  • Wessberg, J., C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S.J. Biggs, M.A. Srinivasan, and M.A. Nicolelis. 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature408(6810):361–365.

    Article  Google Scholar 

  • Williams, J.C., R.L. Rennaker, and D.R. Kipke. 1999. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Brain Res. Protoc. 4(3):303–313.

    Article  Google Scholar 

  • Yuen, T.G. and W.F. Agnew. 1995. Histological evaluation of polyesterimide-insulated gold wires in brain. Biomaterials16(12):951–956.

    Article  Google Scholar 

  • Zhong, Y. and R.V. Bellamkonda. 2005. Controlled release of antiinflammatory agent alphaMSH from neural implants. J. Control Rel. 106(3):309–318.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Tresco, P.A., Gerhardt, G.A. (2008). The Biotic-Abiotic Interface. In: Brain-Computer Interfaces. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8705-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8705-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8704-2

  • Online ISBN: 978-1-4020-8705-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics