Skip to main content

Catalytic Aldol Additions

  • Chapter
Aldol Reactions

It was 1973 when Mukaiyama and coworkers described the first application of silyl enol ethers in aldol additions.1 This reaction is promoted by Lewis acids and allowed a catalytic and an enantioselective execution for the first time.2 Moreover, the regioselectivity can be controlled efficiently by using defined silyl enol ether of unsymmetrical ketones. High chemoselectivities were observed by using aldehydes, ketones and carboxylic esters in these transformations (Scheme 3.1).3,4

The level and the sense of stereoselectivity often vary and depend on the aldehydes, silyl enol ethers and on the Lewis acids used. The stereochemical results have been rationalized by considering so-called open transitions states (Scheme 3.2).5 This illustration is a simple working model based on repulsive forces only. The influence of different Lewis acids, the influence of different substituents and the fate of silyl group during the reaction were not involved in this model. For further discussion and mechanistic understanding see Hiraiwa et al. and others.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukaiyama T, Narasaka K, Banno K (1973) Chem Lett 1011

    Google Scholar 

  2. Mukaiyama T, Banno K, Narasaka K (1974) J Am Chem Soc 96:7503

    Article  CAS  Google Scholar 

  3. Banno K, Mukaiyama T (1975) Chem Lett 741

    Google Scholar 

  4. Banno K, Mukaiyama T (1976) Bull Chem Soc Jpn 49:2284

    Article  CAS  Google Scholar 

  5. Murata S, Suzuki M, Noyori R (1980) J Am Chem Soc 102:3248

    Article  CAS  Google Scholar 

  6. (a) Hiraiwa Y, Ishihara K, Yamamoto H (2006) Eur J Org Chem 1837; (b) Denmark SE, Lee W (2008) Chem Asian J 3:327;

    Google Scholar 

  7. Denmark SE, Lee W (2008) Chem Asian J 3

    Google Scholar 

  8. (c) Patel SG, Wiskur SL, (2009) Tetrahedron Lett 50:1164

    Article  CAS  Google Scholar 

  9. (a) Yamamoto H, Ishihara K (eds) (2008) Acid Catalysis in Modern Organic Synthesis, Wiley, Weinheim;

    Google Scholar 

  10. (b) Yamamoto H (ed) (2000) Lewis Acids in Organic Synthesis, Wiley, Weinheim

    Google Scholar 

  11. Gennari C (1993) In: Comprehensive Organic Synthesis, Trost BM, Fleming I, Heathcock CH (eds). Pergamon, Oxford, vol 2, p 629

    Google Scholar 

  12. Braun W (1996) In: Houben-Weyl, Methoden der Organischen Chemie, Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds). Thieme, Stuttgart, vol E21b, p 1603

    Google Scholar 

  13. Nelson SG (1998) Tetrahedron: Asymm 9:357

    Article  CAS  Google Scholar 

  14. Mukaiyama T, Matsuo JI (2004) In: Modern Aldol Reactions, Mahrwald R (ed). Wiley-VCH, Weinheim, vol. 1, p 137

    Google Scholar 

  15. Carreira EM, Fettes A, Marti C (2006) Org Reactions 67:1

    CAS  Google Scholar 

  16. Kalesse M (2005) Top Curr Chem 244:43

    CAS  Google Scholar 

  17. Mukaiyama T (1999) Tetrahedron 55:8609

    Article  CAS  Google Scholar 

  18. (a) Gröger H, Vogl EM, Shibasaki M (1998) Chem Eur J 4:1137;

    Article  Google Scholar 

  19. (b) Johnson JS, Evans DA (2000) Acc Chem Res 33:325;

    Article  CAS  Google Scholar 

  20. (c) Machajewski TD, Wong CH (2000) Angew Chem Int Ed 39:1352;

    Article  CAS  Google Scholar 

  21. (d) Carreira EM (1999) In: Comprehensive Asymmetric Synthesis, Jacobsen EN, Pfaltz A, Yamamoto H (eds). Springer, Heidelberg, vol 3, p 998;

    Google Scholar 

  22. (e) Carreira EM (2000) In: Comprehensive Asymmetric Synthesis, 2nd edn, Ojima I (ed). Wiley-VCH, New York, p 513.

    Google Scholar 

  23. Alcaide B, Almendros P (2002) Eur J Org Chem 1595

    Google Scholar 

  24. (a) Doherty S, Goodrich P, Hardacre C, Parvulescu V, Paun C (2008) Adv Synth Cat 350:295;

    Article  CAS  Google Scholar 

  25. (b) Fraile JM, Perez I, Mayoral JA (2007) J Cat 252:303;

    Article  CAS  Google Scholar 

  26. (c) Costantino U, Fringuelli F, Nocchetti M, Piermatti O (2007) Appl Cat A 326:100;

    Article  CAS  Google Scholar 

  27. (d) Gibson VC, Redshaw C, Solan GA (2007) Chem Rev 107:1745;

    Article  CAS  Google Scholar 

  28. (e) Gu Y, Ogawa C, Kobayashi J, Mori Y, Kobayashi S (2006) Angew Chem Int Ed 45:7217;

    Article  CAS  Google Scholar 

  29. (f) Fraile JM, Perez I, Mayoral JA, Reiser O (2006) Adv Synth Cat 348:1680

    Article  CAS  Google Scholar 

  30. Mlynarski J, Paradowska J (2008) Chem Soc. Rev 37:1502

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2009). Catalytic Aldol Additions. In: Mahrwald, R. (eds) Aldol Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8701-1_7

Download citation

Publish with us

Policies and ethics