Skip to main content

Boron Enolates

  • Chapter

Several reviews have been published to summarize the development of this very important method of aldol additions.1,2,3,4,5,6 Nearly 30 years ago Mukaiyama et al. developed the fundamentals for this transformation.7,8,9 After these initial reports the attention was drawn to the stereoselective execution of this method. The aldol addition proceeds via a chair-like, six-membered transition state, which is more rigid than those of alkali metal enolates. This is due to the shorter boron oxygen bond length, which guarantees a maximum of 1,3-diaxial interactions (R3 ⃡ L) and thus the formation of the more stable transition states A and B. For that reason higher stereoselectivities were observed when used with boron enolates, compared to aldol additions of corresponding lithium enolates. The stereochemical outcome strongly depends on the geometry of the boron enolates used in these reactions. (E)-Enolates provide the anti-configured aldol adducts, whereas syn-aldol adducts were formed by (Z)-enolates.10 These results are illustrated by the transitions states shown in Scheme 2.3.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mukaiyama T (1982) Org React 28:203

    CAS  Google Scholar 

  2. Cowden CJ, Paterson I (1997) Org Reactions 51:1

    CAS  Google Scholar 

  3. Kim BM, Williams SF, Masamune S (1993) In: Comprehensive Organic Synthesis, Trost BM, Fleming I, Heathcock CH (eds). Pergamon, Oxford, vol 2, p 239

    Google Scholar 

  4. Evans DA, Nelson JV, Taber TR (1982) Top Stereochem 13:1

    Article  CAS  Google Scholar 

  5. Mukaiyama T, Matsuo JI (2004) In: Modern Aldol Reactions Mahrwald R (ed). Wiley-VCH, Weinheim, vol 1, p 127

    Chapter  Google Scholar 

  6. Paterson I, Cowden CJ, Wallace DJ (2000) In: Modern Carbonyl Chemistry, Otera J (ed). Wiley-VCH, Weinheim, p 249

    Chapter  Google Scholar 

  7. Mukaiyama T, Inoue T (1976) Chem Lett 559

    Google Scholar 

  8. Inoue T, Uchimaru Z, Mukaiyama T (1977) Chem Lett 153

    Google Scholar 

  9. Inoue T, Mukaiyama T (1980) Bull Chem Soc Jpn 53:174

    Article  CAS  Google Scholar 

  10. Paterson I (1992) Pure Appl Chem 64:1821

    Article  CAS  Google Scholar 

  11. Masamune S, Mori S, Van Horn DE, Brooks DW (1979) Tetrahedron Lett 20:1665

    Article  Google Scholar 

  12. Van Horn DE, Masamune S (1979) Tetrahedron Lett 20:2229

    Article  Google Scholar 

  13. Evans DA, Nelson JV, Vogel E, Taber TR (1981) J Am Chem Soc 103:3099

    Article  CAS  Google Scholar 

  14. Evans DA, Vogel E, Nelson JV (1979) J Am Chem Soc 101:6120

    Article  CAS  Google Scholar 

  15. Hirama M, Garvey DS, Lu LDL, Masamune S (1979) Tetrahedron Lett 20:3937

    Article  Google Scholar 

  16. Abiko, A, Liu JF, Masamune S (1996) J Org Chem 61:2590

    Article  CAS  Google Scholar 

  17. Abiko A (2002) Org Synth 79:116

    CAS  Google Scholar 

  18. Abiko A (2002) Org Synth 79:103

    CAS  Google Scholar 

  19. Chow HF, Seebach D (1986) Helv Chim Acta 69:604

    Article  CAS  Google Scholar 

  20. Chow HF, Seebach D (1986) Helv Chim Acta 69:604

    Article  CAS  Google Scholar 

  21. Hirama M, Masamune S (1979) Tetrahedron Lett 2225

    Google Scholar 

  22. Evans DA, Nelson JV, Vogel E, Taber TR (1981) J Am Chem Soc 103:3099

    Article  CAS  Google Scholar 

  23. Hirama M, Garvey DS, Lu LDL, Masamune S (1979) Tetrahedron Lett 20:937

    Article  Google Scholar 

  24. Cergol KM, Coster MJ (2007) Nature Protocols 2:2568

    Article  CAS  Google Scholar 

  25. Abiko A, Liu JF, Masamune S (1996) J Org Chem 61:2590

    Article  CAS  Google Scholar 

  26. Evans DA, Bartroli J (1982) Tetrahedron Lett 23:807

    Article  CAS  Google Scholar 

  27. Evans DA, Bartroli J, Shih TL (1981) J Am Chem Soc 103:2127

    Article  CAS  Google Scholar 

  28. Masamune S, Choy W, Kerdesky FAJ, Imperiali B (1981) J Am Chem Soc 103:1566

    Article  CAS  Google Scholar 

  29. McCarthy PA (1982) Tetrahedron Lett 23:4199

    Article  CAS  Google Scholar 

  30. Meyers AI, Yamamoto Y (1984) Tetrahedron 40:2309

    Article  CAS  Google Scholar 

  31. Meyers AI, Yamamoto Y (1981) J Am Chem Soc 103:4278

    Article  CAS  Google Scholar 

  32. Oppolzer W, Blagg J, Rodriguez I, Walther E (1980) J Am Chem Soc 112:2762

    Google Scholar 

  33. Oppolzer W (1988) Pure Appl Chem 60:39

    Article  CAS  Google Scholar 

  34. Evans DA, Takacs JM, McGee LR, Ennis MD, Mathre DJ, Bartroli J (1981) Pure Appl Chem 53:1109

    Article  CAS  Google Scholar 

  35. Evans DA (1982) Aldrichimica Acta 15:23

    CAS  Google Scholar 

  36. Braun M (1981) Angew Chem Int Ed Engl 26:24

    Article  Google Scholar 

  37. Inoue T, Liu JF, Buske DC, Abiko A (2002) J Org Chem 67:5250

    Article  CAS  Google Scholar 

  38. Fanjul S, Hulme AN, White JW (2006) Org Lett 8:4219

    Article  CAS  Google Scholar 

  39. Evans DA, Sjorgren EB, Bartroli J, Dow RL (1986) Tetrahedron Lett 27:4957

    Article  CAS  Google Scholar 

  40. Evans DA, Dow RL, Shih TL, Takacs JM, Zahler R (1990) J Am Chem Soc 112:5290

    Article  CAS  Google Scholar 

  41. Evans DA, Weber AE (1986) J Am Chem Soc 108:6557

    Google Scholar 

  42. Evans DA, Sjorgren EB, Bartroli J, Dow RL (1986) Tetrahedron Lett 27:4957

    Article  CAS  Google Scholar 

  43. Evans DA, Sjorgren EB (1985) Tetrahedron Lett 26:3783

    Article  CAS  Google Scholar 

  44. Abiko A (2004) Acc Chem Res 37:387

    Article  CAS  Google Scholar 

  45. Evans DA, Cee V, Siska SJ (2006) J Am Chem Soc 128:9433

    Article  CAS  Google Scholar 

  46. Goodman JM, Paton RS (2007) Chem Commun 2124;

    Google Scholar 

  47. (b) Paton RS, Goodman JM (2008) J Org Chem 73:1253;

    Article  CAS  Google Scholar 

  48. (c) Paton, RS, Goodman JM (2006) Org Lett 8:4299

    Article  CAS  Google Scholar 

  49. (a) Dias LC, Aguilar AM (2006) Org Lett 8:4629;

    Article  CAS  Google Scholar 

  50. (b) Dias LC, De Marchi AA, Ferreira MAB, Aguilar AM (2007) Org Lett 9:4869;

    Article  CAS  Google Scholar 

  51. (c) Dias LC, Aguilar AM (2008) Chem Soc Rev 37:451

    Article  CAS  Google Scholar 

  52. Mori Y, Kobayashi J, Manabe K, Kobayashi S (2002) Tetrahedron 58:8263

    Article  CAS  Google Scholar 

  53. Mori Y, Manabe K, Kobayashi S (2001) Angew Chem Int Ed Engl 40:2815

    Article  CAS  Google Scholar 

  54. Aelvoet K, Batsanov AS, Blatch AJ, Grosjean C, Patrick LGF, Smethurst CA, Whiting A (2008) Angew Chem Int Ed 47:768

    Article  CAS  Google Scholar 

  55. Burke MD, Berger EM, Schreiber SL (2003) Science 302:613

    Article  CAS  Google Scholar 

  56. (a) Florence GJ, Gardner NM, Paterson I (2008) Nat Prod Rep 25:342;

    Article  CAS  Google Scholar 

  57. (b) Yeung KS, Paterson I (2005) Chem Rev 105:4237;

    Article  CAS  Google Scholar 

  58. (c) Norcross RD, Paterson I (1995) Chem Rev 95:2041

    Article  CAS  Google Scholar 

  59. Paterson I, Wallace DC, Cowden CD (1998) Synthesis 639;

    Google Scholar 

  60. (b) Paterson I, Norcross RD, Ward RA, Romea P, Lister MA (1994) J Am Chem Soc 116:11287

    Article  CAS  Google Scholar 

  61. Paterson I, Florence GJ (2003) Eur J Org Chem 2193

    Google Scholar 

  62. Paterson I, Wren SP (1993) Chem Commun 1790;

    Google Scholar 

  63. Paterson I, Schlapbach A (1995) Synlett 498

    Google Scholar 

  64. (a) Paterson I, Chen DYK, Coster MJ, Acena JL, Bach J, Gibson KR, Keown LE, Oballa RM, Trieselmann A, Wallace DJ, Hodgson AP, Norcross RD (2001) Angew Chem Int Ed Engl 40:4055;

    Article  CAS  Google Scholar 

  65. (b) Paterson I, Coster MJ, Chen DYK, Gibson KR, Wallace DJ (2005) Org Biomol Chem 3:2410

    Article  CAS  Google Scholar 

  66. (c) Paterson I, Coster MJ, Chen DYK, Oballa RM, Wallace DJ, Norcross RD (2005) Org Biomol Chem 3:2399

    Article  CAS  Google Scholar 

  67. Crossman JS, Perkins MV (2006) J Org Chem 71:117

    Article  CAS  Google Scholar 

  68. Diaz-Oltra S, Carda M, Murga J, Falomir E, Marco JA (2008) Chem Eur J 14:9240

    Article  CAS  Google Scholar 

  69. Barth R, Mulzer J (2008) Tetrahedron 64:4718; for further total synthesis see also

    Article  CAS  Google Scholar 

  70. (a) Evans DA, Fitch DM (1997) J Org Chem 62:454;

    Article  CAS  Google Scholar 

  71. (b) Paterson I, Lombart HG, Allerton C (1999) Org Lett 1:19;

    Article  CAS  Google Scholar 

  72. (c) Paterson I, Man J (1997) Tetrahedron Lett 38:695

    Article  CAS  Google Scholar 

  73. (a) Toshima K, Tatsuta K. Kinoshita M (1986) Tetrahedron Lett 27:4741;

    Article  CAS  Google Scholar 

  74. (b) Toshima K, Tatsuta K, Kinoshita M (1988) Bull Chem Soc Jpn 61:2369;

    Article  CAS  Google Scholar 

  75. (c) Seebach D, Chow HF, Jackson RFW, Lawson K, Sutter MA, Thaisrivongs S, Zimmermann J (1985) J Am Chem Soc 107:5292;

    Article  CAS  Google Scholar 

  76. (d) Evans DA, Fitch DM (1997) J Org Chem 62:454;

    Article  CAS  Google Scholar 

  77. (e) Paterson I, Lombart HG, Allerton C (1999) Org Lett 1:19;

    Article  CAS  Google Scholar 

  78. (f) Paterson I, Man J (1997) Tetrahedron Lett 38:695

    Article  CAS  Google Scholar 

  79. Cachoux F, Schaal F, Teichert A, Wagner T, Altmann KH (2004) Synlett 2709

    Google Scholar 

  80. Ribes C, Falomir E, Carda M, Marco JA (2007) Org Lett 9:77

    Article  CAS  Google Scholar 

  81. Marco JA, Carda M, Díaz-Oltra S, Murga J, Falomir E, Roeper H (2003) J Org Chem 68:8577

    Article  CAS  Google Scholar 

  82. Paterson I, Anderson EA, Findlay AD, Knappy CS (2008) Tetrahedron 64:4768

    Article  CAS  Google Scholar 

  83. Mahrwald R (1999) Chem Rev 99:1095

    Article  CAS  Google Scholar 

  84. Evans DA, Burch JD, Hu E, Jaeschke G (2008) Tetrahedron 64:4671

    Article  CAS  Google Scholar 

  85. Evans DA, Siska SJ, Cee VJ (2003) Angew Chem Int Ed 42:1761

    Article  CAS  Google Scholar 

  86. Evans DA, Starr JT (2004) Angew Chem Int Ed 41:1787

    Article  Google Scholar 

  87. Loh TP, Feng LC (2001) Tetrahedron Lett 42:6001

    Article  CAS  Google Scholar 

  88. Jiang Y, Hong J, Burke SD (2004) Org Lett 6:1445

    Article  CAS  Google Scholar 

  89. (a) Paterson I, Tudge M (2003) Angew Chem Int Ed 42:343;

    Article  CAS  Google Scholar 

  90. (b) Paterson I, Tudge M (2003) Tetrahedron 59:6833

    Article  CAS  Google Scholar 

  91. Zou B, Wie J, Cai G, Ma D (2003) Org Lett 5:3503

    Article  CAS  Google Scholar 

  92. Chen J, Forsyth CJF (2003) J Am Chem Soc 125:8734

    Article  CAS  Google Scholar 

  93. (a) Enders D, Lohray BB (1988) Angew Chem 100:594;

    Article  CAS  Google Scholar 

  94. (b) Enders D, Lohray BB (1987) Angew Chem 99:395;

    Article  Google Scholar 

  95. Enders D, Prokopenko OF, Raabe G, Runsink J (1996) Synthesis 1095

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2009). Boron Enolates. In: Mahrwald, R. (eds) Aldol Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8701-1_4

Download citation

Publish with us

Policies and ethics