Advertisement

Copper Lewis Acids

In 1996, chiral (pybox)Cu(II) complexes were employed as catalysts in highly enantioselective aldol additions for the first time. For comprehensive overviews of this development see Stanley and Sibi and others.1,2,3 The Mukaiyama aldol addition of (benzyloxy)acetaldehyde 2 is catalysed by chiral bis(oxazoline) Cu(OTf)2 6 and pyridyl bis(oxazoline) Cu(II) complex 7. Enantioselectivities are significantly lower for aldehydes nominally incapable of chelation (Scheme 3.1.4.1).4,5

This transformation can be extended to vinylogous substrates. Chan diene 8 and diene acetal 10 react with benzyloxyacetaldehyde to yield the expected δ-hydroxy compounds 9 and 11 with a high degree of enantioselectivity (Scheme 3.1.4.2).

Keywords

Total Synthesis Aldol Reaction Aldol Addition Aldol Adduct Thiopropionic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stanley LM, Sibi MP (2008) In: Acid Catalysis in Modern Organic Synthesis, Yamamoto H, Ishihara K (eds). Wiley, Weinheim, vol 2, p 911Google Scholar
  2. 2.
    Johnson JS, Nicewicz DA (2004) In: Modern Aldol Reactions, Mahrwald R (ed). Wiley, Weinheim, vol 2, p 69CrossRefGoogle Scholar
  3. 3.
    Shibasaki M, Kanai M (2008) Chem Rev 108:2853CrossRefGoogle Scholar
  4. 4.
    Evans DA, Murry JA, Kozlowski MC (1996) J Am Chem Soc 118:5814CrossRefGoogle Scholar
  5. 5.
    Evans DA, Kozlowski MC, Murry JA, Burgey CS, Campos K, Connell BT, Staples RJ (1999) J Am Chem Soc 121:669CrossRefGoogle Scholar
  6. 6.
    Evans DA, Fitch DM, Smith TE, Cee VJ (2000) J Am Chem Soc 122:10033CrossRefGoogle Scholar
  7. 7.
    Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M (1999) J Am Chem Soc 121:7540CrossRefGoogle Scholar
  8. 8.
    Evans DA, Hu E, Burch JD, Jaeschke G (2002) J Am Chem Soc 124:5654CrossRefGoogle Scholar
  9. 9.
    Gathergood N, Juhl K, Poulsen TB, Thordrup K, Jorgensen KA (2004) Org Biomol Chem 2:1077CrossRefGoogle Scholar
  10. 10.
    Evans DA, Kozlowski MC, Burgey CS, MacMillan DWC (1997) J Am Chem Soc 119:7893CrossRefGoogle Scholar
  11. 11.
    Evans DA, Burgey CS, Kozlowski MC, Tregay SW (1999) J Am Chem Soc 121:686CrossRefGoogle Scholar
  12. 12.
    Roers R, Verdine GL (2001) Tetrahedron Lett 42:3563CrossRefGoogle Scholar
  13. 13.
    Reichel F, Fang XM, Yao SL, Ricci M, Jørgensen KA (1999) Chem Commun 1505Google Scholar
  14. 14.
    Kobayashi S, Nagayama S, Busujima T (1998) J Am Chem Soc 120:8287CrossRefGoogle Scholar
  15. 15.
    Kobayashi S, Nagayama S, Busujima T (1999) Tetrahedron 55:8739CrossRefGoogle Scholar
  16. 16.
    Krüger J, Carreira EM (1998) J Am Chem Soc 120:837CrossRefGoogle Scholar
  17. 17.
    Pagenkopf BL, Krüger J, Stojanovic A, Carreira EM (1998) Angew Chem Int Ed 37:3124CrossRefGoogle Scholar
  18. 18. (a)
    (a) Oisaki K, Suto Y, Kanai M, Shibasaki M (2003) J Am Chem Soc 125:5644;CrossRefGoogle Scholar
  19. (b).
    (b) Suto Y, Kumagai N, Matsunaga S, Kanai M, Shibasaki M (2005) Org Lett 5:3147;CrossRefGoogle Scholar
  20. (c).
    (c) Oisaki K, Zhao D, Suto Y, Kanai M, Shibasaki M (2005) Tetrahedron Lett 46:4325;CrossRefGoogle Scholar
  21. (d).
    (d) Oisaki K, Zhao D, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:7164;CrossRefGoogle Scholar
  22. (e).
    (e) Zhao D, Oisaki K, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:14440CrossRefGoogle Scholar
  23. 19. (a)
    (a) Le Julie CD, Pagenkopf BL (2004) Org Lett 6:4097;CrossRefGoogle Scholar
  24. (b).
    (b) Benaglia M, Cinquini M, Cozzi F, Celentano G (2004) Org Biomol Chem 2:3401;CrossRefGoogle Scholar
  25. (c).
    (c) Simonelli B, Orlandi S, Benaglia M, Pozzi G (2004) Eur J Org Chem 2669;Google Scholar
  26. (d).
    (d) Okamura H, Bolm C (2004) Chem Lett 33:482;CrossRefGoogle Scholar
  27. (e).
    (e) Langner M, Bolm C (2004) Angew Chem Int Ed 43:5984;CrossRefGoogle Scholar
  28. (f).
    (f) Langner M, Remy P, Bolm C (2005) Chem Eur J 11:6254;CrossRefGoogle Scholar
  29. (g).
    (g) Remy P, Langner M, Bolm C (2006) Org Lett 8:1209;CrossRefGoogle Scholar
  30. (h).
    (h) Sedelmeier J, Hammerer T, Bolm C (2008) Org Lett 10:917;CrossRefGoogle Scholar
  31. (i).
    (i) Langner M, Remy P, Bolm C (2005) Synlett 781Google Scholar
  32. (k).
    (k) Orlandi S, Benaglia M, Dell'Anna G, Celentano G (2007) J Organomet Chem 692:2120CrossRefGoogle Scholar
  33. 20. (a)
    (a) Orlandi S, Benaglia M, Cozzi F (2004) Tetrahedron Lett 45:1747;CrossRefGoogle Scholar
  34. (b).
    (b) Lalic G, Aloise AD, Shair MD (2003) J Am Chem Soc 125:2852;CrossRefGoogle Scholar
  35. (c).
    (c) Fortner KS, Shair MD (2007) J Am Chem Soc 129:1032CrossRefGoogle Scholar
  36. 21.
    Magdziak D, Lalic G, Lee HM, Fortner KC, Aloise AD,MD (2005) J Am Chem Soc 127:7284CrossRefGoogle Scholar
  37. 22.
    van Lingen HL, van Delft FL, Storcken RPM, Hekking KFW, Klaassen A, Smits JJM, Ruskowska P, Frelek J, Rutjes FPJT (2005) Eur J Org Chem 4975Google Scholar
  38. 23. (a)
    (a) Bluet G, Campagne JM (2001) J Org Chem 66:4293;CrossRefGoogle Scholar
  39. (b).
    (b) Bazan-Tejeda B, Bluet G, Broustal G, Campagne JM (2006) Chem Eur J 12:8358CrossRefGoogle Scholar
  40. 24. (a)
    (a) Blay G, Hernandez-Olmos V, Pedro JR (2008) Org Biomol Chem 6:468;CrossRefGoogle Scholar
  41. (b).
    (b) Blay G, Climent E, Fernandez I, Hernandez-Olmos V, Pedro JR (2007) Tetrahedron: Asymm 18:1603;CrossRefGoogle Scholar
  42. (c).
    (c) Colak M, Aral T, Hosgoeren H, Demirel N (2007) Tetrahedron: Asymm 18:1129;CrossRefGoogle Scholar
  43. (c).
    (c) Mansawat W, Saengswang I, U-prasitwong P, Bhanthumnavin W, Vilaivan T (2007) Tetrahedron Lett 48:4235;CrossRefGoogle Scholar
  44. (d).
    (d) Bandini M, Benaglia M, Sinisi R, Tommasi S, Umani-Ronchi A (2007) Org Lett 9:2151;CrossRefGoogle Scholar
  45. (e).
    (e) Bandini M, Piccinelli F, Tommasi S, Umani-Ronchi A, Ventrici C (2007) Chem Commun 616Google Scholar
  46. (f).
    (f) Maheswaran H, Prasanth KL, Krishna GG, Ravikumar K, Sridhar B, Kantam ML (2006) Chem Commun 4066Google Scholar
  47. (g).
    (g) Blay G, Climent E, Fernandez I, Hernandez-Olmos V, Pedro JR (2006) Tetrahedron: Asymm 17:2046;CrossRefGoogle Scholar
  48. (h).
    (h) Gan C, Lai G, Zhang Z, Wang Z, Zhou MM (2006) Tetrahedron: Asymm 17:725CrossRefGoogle Scholar
  49. 25.
    Orlandi S, Mandoli A, Pini D, Salvadori P (2001) Angew Chem Int Ed 40:2519CrossRefGoogle Scholar
  50. 26.
    Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M (1999) J Am Chem Soc 121:7540CrossRefGoogle Scholar
  51. 27.
    Evans DA, Hu D, Burch JD, Jaeschke G (2002) J Am Chem Soc 12:5654CrossRefGoogle Scholar
  52. 28. (a)
    (a) Paterson I, Davies RDM, Marquez R (2001) Angew Chem Int Ed Engl 40:603;CrossRefGoogle Scholar
  53. (b).
    (b) Paterson I, Davies RDM, Heimann AC, Marquez R, Meyer A (2003) Org Lett 5:4477CrossRefGoogle Scholar
  54. 29.
    Krüger J, Carreira EM (1998) Tetrahedron Lett 39:7013CrossRefGoogle Scholar
  55. 30. (a)
    (a) Fettes A, Carreira EM (2002) Angew Chem Int Ed 41:4098;CrossRefGoogle Scholar
  56. (b).
    (b) Fettes, A, Carreira EM (2003) J Org Chem 68:9274CrossRefGoogle Scholar
  57. 31.
    Brennan CJ, Campagne JM (2001) Tetrahedron Lett 42:5195CrossRefGoogle Scholar
  58. 32.
    Evans DA, Nagorny P, Reynolds DJ, McRae KJ (2007) Angew Chem Int Ed 46:541CrossRefGoogle Scholar
  59. 33.
    Evans DA, Trotter BW, Coleman PF, Cote B, Dias LC, Rajapakse HA, Tyler AN (1999) Tetrahedron 55:8671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Personalised recommendations