Skip to main content

Radiation Induced Cell Deaths

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

The previous classification of radiation induced cell deaths into either necrosis or apoptosis is today recognized as too simplistic. New possibilities to make use of other death mechanisms, when treating malignant diseases with targeted therapy, include rapid or delayed apoptosis, mitotic catastrophes, autophagy or senescence induction. Targeted radioimmunotherapy typically delivers low doses with low dose-rate irradiation to tumors, and is able to induce this extended panorama of different death mechanisms, which will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nature Reviews 2004; 4(9):737-47.

    PubMed  CAS  Google Scholar 

  2. Grubbé EH. Priority in the therapeutic use of X-rays. Radiology 1933; 21:156-62.

    Google Scholar 

  3. Cox JD. The science and art of radiation oncology after a century. International Journal of Radiation Oncology, Biology, Physics 1999; 43(1):1-2.

    PubMed  CAS  Google Scholar 

  4. Bedford JS, Dewey WC. Radiation Research Society. 1952-2002. Historical and current highlights in radiation biology: has anything important been learned by irradiating cells? Radiation Research 2002; 158(3):251-91.

    PubMed  CAS  Google Scholar 

  5. Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre, 2 edn. Berlin: Verlag von August Hirschwald, 1858.

    Google Scholar 

  6. Levin S. A toxicologic pathologist’s view of apoptosis or I used to call it necrobiosis, but now I’m singing the apoptosis blues. Toxicologic Pathology 1995; 23(4):533-9

    PubMed  CAS  Google Scholar 

  7. Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, Trump BF. The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicologic Pathology 1999; 27(4):484-90.

    PubMed  CAS  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 1972; 26(4):239-57.

    PubMed  CAS  Google Scholar 

  9. Skalka M, Matyasova J, Cejkova M. Dna in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Letters 1976; 72(2):271-4.

    PubMed  CAS  Google Scholar 

  10. Hendry JH, Potten CS. Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine 1982; 42(6):621-8.

    PubMed  CAS  Google Scholar 

  11. Hendry JH, Potten CS, Chadwick C, Bianchi M. Cell death (apoptosis) in the mouse small intestine after low doses: effects of dose-rate, 14.7 MeV neutrons, and 600 MeV (maximum energy) neutrons. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine 1982; 42(6):611-20.

    PubMed  CAS  Google Scholar 

  12. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes & Development 2006; 20(1):1-15.

    CAS  Google Scholar 

  13. Abend M. Reasons to reconsider the significance of apoptosis for cancer therapy. International Journal of Radiation Biology 2003; 79(12):927-41.

    PubMed  CAS  Google Scholar 

  14. Farber E. Programmed cell death: necrosis versus apoptosis. Modern Pathology 1994; 7(5):605-9.

    PubMed  CAS  Google Scholar 

  15. Olive PL, Durand RE. Apoptosis: an indicator of radiosensitivity in vitro? International Journal of Radiation Biology 1997; 71(6):695-707.

    PubMed  CAS  Google Scholar 

  16. Shinomiya N. New concepts in radiation-induced apoptosis: ‘premitotic apoptosis’ and ‘postmitotic apoptosis’. Journal of Cellular and Molecular Medicine 2001; 5(3):240-53.

    PubMed  CAS  Google Scholar 

  17. Shinomiya N, Kuno Y, Yamamoto F, Fukasawa M, Okumura A, Uefuji M, Rokutanda M. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells. International Journal of Radiation Oncology, Biology, Physics 2000; 47 (3):767-77.

    PubMed  CAS  Google Scholar 

  18. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clinical Cancer Research 2005; 11(9):3155-62.

    PubMed  Google Scholar 

  19. Golstein P, Kroemer G. A multiplicity of cell death pathways. Symposium on apoptotic and non-apoptotic cell death pathways. EMBO Reports 2007; 8(9):829-33.

    PubMed  CAS  Google Scholar 

  20. Kroemer G, El-Deiry WS, Golstein P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation 2005; 12(Suppl 2):1463-7.

    PubMed  CAS  Google Scholar 

  21. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. The International Journal of Biochemistry & Cell Biology 2004; 36(12):2405-19.

    CAS  Google Scholar 

  22. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. The Oncologist 2006; 11(4):342-57.

    PubMed  CAS  Google Scholar 

  23. Russell P, Nurse P. cdc25 + functions as an inducer in the mitotic control of fission yeast. Cell 1986; 45(1):145-53.

    PubMed  CAS  Google Scholar 

  24. Hopwood LE, Tolmach LJ. Deficient DNA synthesis and mitotic death in x-irradiated HeLa cells. Radiation Research 1971; 46(1):70-84.

    PubMed  CAS  Google Scholar 

  25. Terasima T, Ohara H. Chromosome aberration and mitotic death in x-irradiated HeLa cells. Mutation Research 1968; 5(1):195-7.

    PubMed  CAS  Google Scholar 

  26. Puck TT. Action of radiation on mammalian cells III. Relationship between reproductive death and induction of chromosome anomalies by x-irradiation of euploid human cells in vitro. Proceedings of the National Academy of Sciences of the United States of America 1958; 44(8):772-80.

    PubMed  CAS  Google Scholar 

  27. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. International Journal of Radiation Biology 1997; 72(4):409-21.

    PubMed  CAS  Google Scholar 

  28. Merritt AJ, Allen TD, Potten CS, Hickman JA. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene 1997; 14(23):2759-66.

    PubMed  CAS  Google Scholar 

  29. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Experimental Cell Research 1961; 25:585-621.

    Google Scholar 

  30. de Duve C. Introduced at the CIBA foundation symposium on lysosomes, 1963.

    Google Scholar 

  31. Chang BD, Broude EV, Dokmanovic M, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research 1999; 59(15):3761-7.

    PubMed  CAS  Google Scholar 

  32. Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53- dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes & Development 1994; 8(21):2540-51.

    CAS  Google Scholar 

  33. Hamberg H. Cellular autophagocytosis induced by X-irradiation and vinblastine. On the origin of the segregating membranes. Acta pathologica, microbiologica, et immunologica Scandinavica 1983; 91(5):317-27.

    CAS  Google Scholar 

  34. Hamberg H, Brunk U, Ericsson JL, Jung B. Cytoplasmic effects of X-irradiation on cultured cells 2. Alterations in lysosomes, plasma membrane, Golgi apparatus, and related structures. Acta pathologica et microbiologica Scandinavica 1977; 85(5):625-39.

    CAS  Google Scholar 

  35. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death and Differentiation 2007; 14(7):1237-43.

    PubMed  CAS  Google Scholar 

  36. Okada S. Radiation-induced cell death. In: Altman KI, Gerber GB, Okada S, eds. Radiation biochemistry, 1. New York: Academic, 1970:247-307.

    Google Scholar 

  37. Somosy Z. Radiation response of cell organelles. Micron 2000; 31(2):165-81.

    PubMed  CAS  Google Scholar 

  38. Okada S. Formation of giant cells. In: Altman KI, Gerber GB, Okada S, eds. Radiation biochemistry, 1. New York: Academic, 1970:239-46.

    Google Scholar 

  39. Akagi Y, Ito K, Sawada S. Radiation-induced apoptosis and necrosis in Molt-4 cells: a study of dose-effect relationships and their modification. International Journal of Radiation Biology 1993; 64(1):47-56.

    PubMed  CAS  Google Scholar 

  40. Harms-Ringdahl M, Nicotera P, Radford IR. Radiation induced apoptosis. Mutation Research 1996; 366(2):171-9.

    PubMed  CAS  Google Scholar 

  41. Nakano H, Shinohara K. X-ray-induced cell death: apoptosis and necrosis. Radiation Research 1994; 140(1):1-9.

    PubMed  CAS  Google Scholar 

  42. Szumiel I. Ionizing radiation-induced cell death. International Journal of Radiation Biology 1994; 66(4):329-41.

    PubMed  CAS  Google Scholar 

  43. Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Current Opinion in Chemical biology 1999; 3(1):77-83.

    PubMed  CAS  Google Scholar 

  44. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes & Development 2004; 18(11):1272-82.

    CAS  Google Scholar 

  45. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999; 401(6753):616-20.

    PubMed  CAS  Google Scholar 

  46. Chu K, Teele N, Dewey MW, Albright N, Dewey WC. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradi- ated 14-3-3sigma and CDKN1A (p21) knockout cell lines. Radiation Research 2004; 162(3):270-86.

    PubMed  CAS  Google Scholar 

  47. Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nature Reviews 2005; 5(3):231-7.

    PubMed  CAS  Google Scholar 

  48. Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clinical Cancer Research 2007; 13(18 Pt 2):5501s-8s.

    PubMed  CAS  Google Scholar 

  49. Skwarska A, Augustin E, Konopa J. Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311. Apoptosis 2007; 12 (12):2245-57.

    PubMed  CAS  Google Scholar 

  50. Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death and Differentiation 2008; 15(3):555-66.

    PubMed  CAS  Google Scholar 

  51. Jones KR, Elmore LW, Jackson-Cook C, Demasters G, Povirk LF, Holt SE, Gewirtz DA. p53- Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. International Journal of Radiation Biology 2005; 81(6):445-58.

    PubMed  CAS  Google Scholar 

  52. Lehmann BD, McCubrey JA, Jefferson HS, Paine MS, Chappell WH, Terrian DM. A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle (Georgetown, TX) 2007; 6(5):595-605.

    CAS  Google Scholar 

  53. Moretti L, Cha YI, Niermann KJ, Lu B. Switch between apoptosis and autophagy: radiationinduced endoplasmic reticulum stress? Cell Cycle (Georgetown, TX) 2007; 6(7):793-8.

    CAS  Google Scholar 

  54. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology 1998; 60:619-42.

    PubMed  CAS  Google Scholar 

  55. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 2001; 4(5):303-13.

    PubMed  CAS  Google Scholar 

  56. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. International Review of Cytology 1980; 68:251-306.

    PubMed  CAS  Google Scholar 

  57. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death. FASEB Journal 1995; 9(13):1277-87.

    PubMed  CAS  Google Scholar 

  58. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science (New York) 1995; 267(5203):1456-62.

    CAS  Google Scholar 

  59. Williams JR, Little JB, Shipley WU. Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature 1974; 252(5485):754-5.

    PubMed  CAS  Google Scholar 

  60. Savill J. Phagocyte recognition of apoptotic cells. Biochemical Society Transactions 1996; 24(4):1065-9.

    PubMed  CAS  Google Scholar 

  61. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews. Molecular Cell Biology 2004; 5(11):897-907.

    PubMed  CAS  Google Scholar 

  62. Timmer JC, Salvesen GS. Caspase substrates. Cell Death and Differentiation 2007; 14(1):66-72.

    PubMed  CAS  Google Scholar 

  63. Chipuk JE, Green DR. Do inducers of apoptosis trigger caspase-independent cell death? Nature Reviews Molecular Cell Biology 2005; 6(3):268-75.

    PubMed  CAS  Google Scholar 

  64. Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemotherapy and Pharmacology 2006; 57(5):545-53.

    PubMed  CAS  Google Scholar 

  65. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biology & Therapy 2005; 4(2):139-63.

    CAS  Google Scholar 

  66. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology 2008; 9(3):231-41.

    PubMed  CAS  Google Scholar 

  67. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116(2):205-19.

    PubMed  CAS  Google Scholar 

  68. Wang X. The expanding role of mitochondria in apoptosis. Genes & Development 2001; 15 (22):2922-33.

    CAS  Google Scholar 

  69. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. The Journal of Biological Chemistry 2000; 275(40):31199-203.

    PubMed  CAS  Google Scholar 

  70. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91(4):479-89.

    PubMed  CAS  Google Scholar 

  71. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes & Development 1999; 13(24):3179-84.

    CAS  Google Scholar 

  72. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. The EMBO Journal 1998; 17(6):1675-87.

    PubMed  CAS  Google Scholar 

  73. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94(4):481-90.

    PubMed  CAS  Google Scholar 

  74. Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle (Georgetown, TX) 2007; 6(9):1006-10.

    CAS  Google Scholar 

  75. Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochimica et biophysica acta 1996; 1287(2-3):77-102.

    PubMed  Google Scholar 

  76. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381):15-6.

    PubMed  CAS  Google Scholar 

  77. Marx J. Oncology. Recruiting the cell’s own guardian for cancer therapy. Science (New York) 2007; 315(5816):1211-3.

    CAS  Google Scholar 

  78. Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Research 2007; 35:7475-84.

    PubMed  CAS  Google Scholar 

  79. Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. Journal of Molecular Medicine (Berlin, Germany) 2007; 85(11):1175-86.

    CAS  Google Scholar 

  80. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science (New York) 1991; 253(5015):49-53.

    CAS  Google Scholar 

  81. Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Reviews 2001; 1(3):233-40.

    PubMed  CAS  Google Scholar 

  82. Soussi T, Lozano G. p53 mutation heterogeneity in cancer. Biochemical and Biophysical Research Communications 2005; 331(3):834-42.

    PubMed  CAS  Google Scholar 

  83. Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene 2000; 242(1-2):15-29.

    PubMed  CAS  Google Scholar 

  84. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 2004; 3(8-9):997-1007.

    PubMed  CAS  Google Scholar 

  85. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408(6810): 307-10.

    PubMed  CAS  Google Scholar 

  86. Cuddihy AR, Bristow RG. The p53 protein family and radiation sensitivity: yes or no? Cancer Metastasis Reviews 2004; 23(3-4):237-57.

    PubMed  CAS  Google Scholar 

  87. Fei P, El-Deiry WS. P53 and radiation responses. Oncogene 2003; 22(37):5774-83.

    PubMed  CAS  Google Scholar 

  88. Helton ES, Chen X. p53 modulation of the DNA damage response. Journal of Cellular Biochemistry 2007; 100(4):883-96.

    PubMed  CAS  Google Scholar 

  89. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. International Journal of Radiation Oncology, Biology, Physics 2004; 59(4):928-42.

    PubMed  Google Scholar 

  90. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nature Reviews 2002; 2 (8):594-604.

    PubMed  CAS  Google Scholar 

  91. Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V. Classic and novel roles of p53: prospects for anticancer therapy. Trends in Molecular Medicine 2007; 13(5):192-9.

    PubMed  CAS  Google Scholar 

  92. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24(17):2899-908.

    PubMed  CAS  Google Scholar 

  93. Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death and Differentiation 2006; 13(6):951-61.

    PubMed  CAS  Google Scholar 

  94. Aylon Y, Oren M. Living with p53, dying of p53. Cell 2007; 130(4):597-600.

    PubMed  CAS  Google Scholar 

  95. Alvarez S, Drane P, Meiller A, Bras M, Deguin-Chambon V, Bouvard V, May E. A comprehensive study of p53 transcriptional activity in thymus and spleen of gamma irradiated mouse: high sensitivity of genes involved in the two main apoptotic pathways. International Journal of Radiation Biology 2006; 82(11):761-70.

    PubMed  CAS  Google Scholar 

  96. Findley HW, Gu L, Yeager AM, Zhou M. Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 1997; 89(8):2986-93.

    PubMed  CAS  Google Scholar 

  97. Kobayashi T, Ruan S, Jabbur JR, et al. Differential p53 phosphorylation and activation of apoptosis-promoting genes Bax and Fas/APO-1 by irradiation and ara-C treatment. Cell Death and Differentiation 1998; 5(7):584-91.

    PubMed  CAS  Google Scholar 

  98. Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O’Connor PM, Fornace AJ, Jr. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene 1994; 9(12):3743-51.

    PubMed  CAS  Google Scholar 

  99. Erlacher M, Michalak EM, Kelly PN, et al. BH3-only proteins Puma and Bim are ratelimiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005; 106(13):4131-8.

    PubMed  CAS  Google Scholar 

  100. Jeffers JR, Parganas E, Lee Y, et al. Puma is an essential mediator of p53-dependent and independent apoptotic pathways. Cancer Cell 2003; 4(4):321-8.

    PubMed  CAS  Google Scholar 

  101. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science (New York) 2003; 302(5647):1036-8.

    CAS  Google Scholar 

  102. Fei P, Bernhard EJ, El-Deiry WS. Tissue-specific induction of p53 targets in vivo. Cancer Research 2002; 62(24):7316-27.

    PubMed  CAS  Google Scholar 

  103. Han J, Goldstein LA, Hou W, Rabinowich H. Functional linkage between NOXA and Bim in mitochondrial apoptotic events. The Journal of Biological Chemistry 2007; 282(22):16223-31.

    PubMed  CAS  Google Scholar 

  104. Embree-Ku M, Venturini D, Boekelheide K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biology of reproduction 2002;66(5): 1456-61.

    PubMed  CAS  Google Scholar 

  105. Sheard MA, Uldrijan S, Vojtesek B. Role of p53 in regulating constitutive and X-radiation- inducible CD95 expression and function in carcinoma cells. Cancer Research 2003; 63(21):7176-84.

    PubMed  CAS  Google Scholar 

  106. Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J. Up-regulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. International Journal of Cancer 1997; 73(5):757-62.

    CAS  Google Scholar 

  107. Burns TF, Bernhard EJ, El-Deiry WS. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 2001; 20(34):4601-12.

    PubMed  CAS  Google Scholar 

  108. Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace AJ, Jr., el-Deiry WS. p53-dependent and –independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Research 1998; 58(8):1593-8.

    PubMed  CAS  Google Scholar 

  109. Wu GS, Burns TF, McDonald ER, 3rd, et al. KILLER/DR5 is a DNA damage-inducible p53- regulated death receptor gene. Nature Genetics 1997; 17(2):141-3.

    PubMed  CAS  Google Scholar 

  110. Kastan M. On the TRAIL from p53 to apoptosis? Nature Genetics 1997; 17(2):130-1.

    PubMed  CAS  Google Scholar 

  111. Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nature Genetics 2000; 26(1):122-7.

    PubMed  CAS  Google Scholar 

  112. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389(6648):300-5.

    PubMed  CAS  Google Scholar 

  113. Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Research 1994; 54(8):2095-7.

    PubMed  CAS  Google Scholar 

  114. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research 1994; 54(12):3131-5.

    PubMed  CAS  Google Scholar 

  115. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the antiapoptotic survivin gene by wild type p53. The Journal of Biological Chemistry 2002; 277 (5):3247-57.

    PubMed  CAS  Google Scholar 

  116. Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW. DNA damage induces a novel p53- survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. The Journal of Pharmacology and Experimental Therapeutics 2002; 303 (1):124-31.

    PubMed  CAS  Google Scholar 

  117. Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23(16):2797-808.

    PubMed  CAS  Google Scholar 

  118. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science (New York) 2004; 303(5660):1010-4.

    CAS  Google Scholar 

  119. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nature Cell Biology 2004; 6(5):443-50.

    PubMed  CAS  Google Scholar 

  120. Konishi A, Shimizu S, Hirota J, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 2003; 114(6):673-88.

    PubMed  CAS  Google Scholar 

  121. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiationinduced apoptosis in mouse thymocytes. Nature 1993; 362(6423):847-9.

    PubMed  CAS  Google Scholar 

  122. Melino G, De Laurenzi V, Vousden KH. p73: friend or foe in tumorigenesis. Nature Reviews 2002; 2(8):605-15.

    PubMed  CAS  Google Scholar 

  123. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002; 416(6880):560-4.

    PubMed  CAS  Google Scholar 

  124. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 fam- ily of transcription factors: overlapping and distinct functions. Journal of Cell Science 2000; 113(Pt 10):1661-70.

    PubMed  CAS  Google Scholar 

  125. Melino G, Bernassola F, Ranalli M, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. The Journal of Biological Chemistry 2004; 279(9):8076-83.

    PubMed  CAS  Google Scholar 

  126. Flinterman M, Guelen L, Ezzati-Nik S, et al. E1A activates transcription of p73 and Noxa to induce apoptosis. The Journal of Biological Chemistry 2005; 280(7):5945-59.

    PubMed  CAS  Google Scholar 

  127. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science (New York) 2002; 297(5585):1352-4.

    CAS  Google Scholar 

  128. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. The Journal of Biological Chemistry 2002; 277(16):13430-7.

    PubMed  CAS  Google Scholar 

  129. Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. The Journal of Biological Chemistry 2002; 277(17):15147-61.

    PubMed  CAS  Google Scholar 

  130. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. The Journal of Biological Chemistry 2002; 277(33):29803-9.

    PubMed  CAS  Google Scholar 

  131. Castedo M, Perfettini JL, Roumier T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 2004; 23(25):4362-70.

    PubMed  CAS  Google Scholar 

  132. Lin B, Kolluri SK, Lin F, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116(4):527-40.

    PubMed  CAS  Google Scholar 

  133. Hara S, Nakashima S, Kiyono T, et al. p53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death and Differentiation 2004; 11 (8):853-61.

    PubMed  CAS  Google Scholar 

  134. Hara S, Nakashima S, Kiyono T, Sawada M, Yoshimura S, Iwama T, Sakai N. Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53. Oncology reports 2004;12(1):119-23.

    PubMed  CAS  Google Scholar 

  135. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003; 22(37):5897-906.

    PubMed  CAS  Google Scholar 

  136. Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis: relevance to radiotherapy. International Journal of Radiation Oncology, Biology, Physics 1995; 33(4):781-96.

    PubMed  CAS  Google Scholar 

  137. Verheij M, Bartelink H. Radiation-induced apoptosis. Cell and Tissue Research 2000; 301 (1):133-42.

    PubMed  CAS  Google Scholar 

  138. Meyn RE, Stephens LC, Ang KK, Hunter NR, Brock WA, Milas L, Peters LJ. Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. International Journal of Radiation Biology 1993; 64(5):583-91.

    PubMed  CAS  Google Scholar 

  139. Rupnow BA, Knox SJ. The role of radiation-induced apoptosis as a determinant of tumor responses to radiation therapy. Apoptosis 1999; 4(2):115-43.

    PubMed  CAS  Google Scholar 

  140. Schmitt CA, Lowe SW. Apoptosis and therapy. The Journal of Pathology 1999; 187(1):127-37.

    PubMed  CAS  Google Scholar 

  141. Stapper NJ, Stuschke M, Sak A, Stuben G. Radiation-induced apoptosis in human sarcoma and glioma cell lines. International Journal of Cancer 1995; 62(1):58-62.

    CAS  Google Scholar 

  142. Steel GG. The case against apoptosis. Acta Oncologica (Stockholm, Sweden) 2001; 40(8):968-75.

    CAS  Google Scholar 

  143. Radford IR, Murphy TK, Radley JM, Ellis SL. Radiation response of mouse lymphoid and myeloid cell lines. Part II. Apoptotic death is shown by all lines examined. International Journal of Radiation Biology 1994; 65(2):217-27.

    PubMed  CAS  Google Scholar 

  144. Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE. Apoptosis in irradiated murine tumors. Radiation Research 1991; 127(3):308-16.

    PubMed  CAS  Google Scholar 

  145. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362 (6423):849-52.

    PubMed  CAS  Google Scholar 

  146. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67(5):879-88.

    PubMed  CAS  Google Scholar 

  147. Strasser A, Harris AW, Jacks T, Cory S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 1994; 79 (2):329-39.

    PubMed  CAS  Google Scholar 

  148. Ogawa Y, Nishioka A, Inomata T, et al. Ionizing radiation-induced apoptosis in human lymphoma cell lines differing in p53 status. International journal of molecular medicine 2000;5(2):139-43.

    PubMed  CAS  Google Scholar 

  149. Sak A, Wurm R, Elo B, et al. Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21(WAF1/CIP1). Cancer Gene Therapy 2003; 10(12):926-34.

    PubMed  CAS  Google Scholar 

  150. Stuschke M, Sak A, Wurm R, Sinn B, Wolf G, Stuben G, Budach V. Radiation-induced apoptosis in human non-small-cell lung cancer cell lines is secondary to cell-cycle progression beyond the G2-phase checkpoint. International Journal of Radiation Biology 2002; 78 (9):807-19.

    PubMed  CAS  Google Scholar 

  151. Eriksson D, Joniani HM, Sheikholvaezin A, Lofroth PO, Johansson L, Riklund Ahlstrom K, Stigbrand T. Combined low dose radio- and radioimmunotherapy of experimental HeLa Hep 2 tumours. European Journal of Nuclear Medicine and Molecular Imaging 2003; 30 (6):895-906.

    PubMed  CAS  Google Scholar 

  152. Wouters BG, Denko NC, Giaccia AJ, Brown JM. A p53 and apoptotic independent role for p21waf1 in tumour response to radiation therapy. Oncogene 1999; 18(47):6540-5.

    PubMed  CAS  Google Scholar 

  153. Brown JM, Wilson G. Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biology & Therapy 2003; 2(5):477-90.

    CAS  Google Scholar 

  154. Ullen A, Sandstrom P, Ahlstrom KR, Sundstrom B, Nilsson B, Arlestig L, Stigbrand T. Use of anticytokeratin monoclonal anti-idiotypic antibodies to improve tumor:nontumor ratio in experimental radioimmunolocalization. Cancer Research 1995; 55(23 Suppl):5868s-73s.

    PubMed  CAS  Google Scholar 

  155. Carlsson J, Eriksson V, Stenerlow B, Lundqvist H. Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging 2006; 33(10):1185-95.

    PubMed  CAS  Google Scholar 

  156. Rossi Norrlund R, Ullen A, Sandstrom P, Holback D, Johansson L, Stigbrand T, Hietala SO, Riklund Ahlstrom K. Experimental radioimmunotargeting combining nonlabeled, iodine125-labeled, and anti-idiotypic anticytokeratin monoclonal antibodies: a dosimetric evaluation. Cancer 1997; 80(12 Suppl):2689-98.

    PubMed  CAS  Google Scholar 

  157. Rossi Norrlund R, Ullen A, Sandstrom P, Holback D, Johansson L, Stigbrand T, Hietala SO, Riklund Ahlstrom K. Dosimetry of fractionated experimental radioimmunotargeting with idiotypic and anti-idiotypic anticytokeratin antibodies. Cancer 1997; 80(12 Suppl):2681-8.

    PubMed  CAS  Google Scholar 

  158. Endlich B, Radford IR, Forrester HB, Dewey WC. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells. Radiation Research 2000; 153(1):36-48.

    PubMed  CAS  Google Scholar 

  159. Mirzaie-Joniani H, Eriksson D, Johansson A, Lofroth PO, Johansson L, Ahlstrom KR, Stigbrand T. Apoptosis in HeLa Hep2 cells is induced by low-dose, low-dose-rate radiation. Radiation Research 2002; 158(5):634-40.

    PubMed  CAS  Google Scholar 

  160. Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T. Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 2002; 94(4 Suppl):1210-4.

    PubMed  Google Scholar 

  161. Carlsson J, Hakansson E, Eriksson V, Grawe J, Wester K, Grusell E, Montelius A, Lundqvist H. Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biotherapy & Radiopharmaceuticals 2003; 18(4):663-70.

    Google Scholar 

  162. Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H. High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. International Journal of Radiation Oncology, Biology, Physics 2001; 50(3):803-8.

    PubMed  CAS  Google Scholar 

  163. Meijer AE, Ekedahl J, Joseph B, Castro J, Harms-Ringdahl M, Zhivotovsky B, Lewensohn R. High-LET radiation induces apoptosis in lymphoblastoid cell lines derived from ataziatelangiectasia patients. International Journal of Radiation Biology 2001; 77(3):309-17.

    PubMed  CAS  Google Scholar 

  164. Takahashi A, Matsumoto H, Furusawa Y, Ohnishi K, Ishioka N, Ohnishi T. Apoptosis induced by high-LET radiations is not affected by cellular p53 gene status. International Journal of Radiation Biology 2005; 81(8):581-6.

    PubMed  CAS  Google Scholar 

  165. Takahashi A, Matsumoto H, Yuki K, et al. High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. International journal of radiation oncology, biology, physics 2004;60(2):591-7.

    PubMed  Google Scholar 

  166. Friesen C, Lubatschofski A, Kotzerke J, Buchmann I, Reske SN, Debatin KM. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. European Journal of Nuclear Medicine and Molecular Imaging 2003; 30(9):1251-61.

    PubMed  CAS  Google Scholar 

  167. Obeid M, Tesniere A, Panaretakis T, et al. Ecto-calreticulin in immunogenic chemotherapy. Immunological Reviews 2007; 220:22-34.

    PubMed  CAS  Google Scholar 

  168. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. Molecular characteristics of immunogenic cancer cell death. Cell Death and Differentiation 2008; 15(1):3-12.

    PubMed  CAS  Google Scholar 

  169. Colombo A, Repici M, Pesaresi M, Santambrogio S, Forloni G, Borsello T. The TAT-JNK inhibitor peptide interferes with beta amyloid protein stability. Cell Death and Differentiation 2007; 14(10):1845-8.

    PubMed  CAS  Google Scholar 

  170. Gisselsson D. Mitotic instability in cancer: is there method in the madness? Cell Cycle (Georgetown, TX) 2005; 4(8):1007-10.

    CAS  Google Scholar 

  171. Castedo M, Kroemer G. [Mitotic catastrophe: a special case of apoptosis]. Journal de la Societe de biologie 2004; 198(2):97-103.

    PubMed  CAS  Google Scholar 

  172. Erenpreisa J, Kalejs M, Ianzini F, et al. Segregation of genomes in polyploid tumour cells following mitotic catastrophe. Cell Biology International 2005; 29(12):1005-11.

    PubMed  CAS  Google Scholar 

  173. Mansilla S, Priebe W, Portugal J. Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle (Georgetown, TX) 2006; 5(1):53-60.

    CAS  Google Scholar 

  174. Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Research 1996; 56(17):4006-12.

    PubMed  CAS  Google Scholar 

  175. Ruth AC, Roninson IB. Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Research 2000; 60(10):2576-8.

    PubMed  CAS  Google Scholar 

  176. Hall EJ. Radiobiology for the radiologist. Philadelphia, PA: J.B. Lippincott Company, 2000.

    Google Scholar 

  177. Bradford CR, Zhu S, Ogawa H, et al. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head & Neck 2003; 25(8):654-61.

    Google Scholar 

  178. Fan S, Smith ML, Rivet DJ, 2nd, Duba D, Zhan Q, Kohn KW, Fornace AJ, Jr., O’Connor PM. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Research 1995; 55(8):1649-54.

    PubMed  CAS  Google Scholar 

  179. Pekkola-Heino K, Servomaa K, Kiuru A, Grenman R. Increased radiosensitivity is associated with p53 mutations in cell lines derived from oral cavity carcinoma. Acta Oto-laryngologica 1996; 116(2):341-4.

    PubMed  CAS  Google Scholar 

  180. Servomaa K, Kiuru A, Grenman R, Pekkola-Heino K, Pulkkinen JO, Rytomaa T. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Proliferation 1996; 29(5):219-30.

    PubMed  CAS  Google Scholar 

  181. Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Research 1993; 53(16):3667-9.

    PubMed  CAS  Google Scholar 

  182. Fan S, el-Deiry WS, Bae I, et al. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer research 1994;54(22):5824-30.

    PubMed  CAS  Google Scholar 

  183. Bhattathiri NV, Bharathykkutty C, Prathapan R, Chirayathmanjiyil DA, Nair KM. Prediction of radiosensitivity of oral cancers by serial cytological assay of nuclear changes. Radiotherapy and Oncology 1998; 49(1):61-5.

    PubMed  CAS  Google Scholar 

  184. Bhattathiri NV, Bindu L, Remani P, Chandralekha B, Nair KM. Radiation-induced acute immediate nuclear abnormalities in oral cancer cells: serial cytologic evaluation. Acta Cytologica 1998; 42(5):1084-90.

    PubMed  CAS  Google Scholar 

  185. Falkvoll KH. The occurrence of apoptosis, abnormal mitoses, cells dying in mitosis and micronuclei in a human melanoma xenograft exposed to single dose irradiation. Strahlentherapie und Onkologie 1990;166(7):487-92.

    PubMed  CAS  Google Scholar 

  186. Ross GM. Induction of cell death by radiotherapy. Endocrine-Related Cancer 1999; 6(1):41-4.

    PubMed  CAS  Google Scholar 

  187. Bedford JS, Mitchell JB, Griggs HG, Bender MA. Radiation-induced cellular reproductive death and chromosome aberrations. Radiation Research 1978; 76(3):573-86.

    PubMed  CAS  Google Scholar 

  188. Carrano AV. Chromosome aberrations and radiation-induced cell death. II. Predicted and observed cell survival. Mutation Research 1973; 17(3):355-66.

    PubMed  CAS  Google Scholar 

  189. Dewey WC, Miller HH, Leeper DB. Chromosomal aberrations and mortality of x-irradiated mammalian cells: emphasis on repair. Proceedings of the National Academy of Sciences of the United States of America 1971; 68(3):667-71.

    PubMed  CAS  Google Scholar 

  190. Schneider DO, Whitmore GF. Comparative effects of neutrons and x-rays on mammalian cells. Radiation Research 1963; 18:286-306.

    PubMed  CAS  Google Scholar 

  191. Bedford JS, Cornforth MN. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts. Radiation Research 1987; 111(3):406-23.

    PubMed  CAS  Google Scholar 

  192. Forrester HB, Albright N, Ling CC, Dewey WC. Computerized video time-lapse analysis of apoptosis of REC:Myc cells X-irradiated in different phases of the cell cycle. Radiation Research 2000; 154(6):625-39.

    PubMed  CAS  Google Scholar 

  193. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23(16):2825-37.

    PubMed  CAS  Google Scholar 

  194. Vogelstein B, Kinzler KW. Achilles’ heel of cancer? Nature 2001; 412(6850):865-6.

    PubMed  CAS  Google Scholar 

  195. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20 (15):1803-15.

    PubMed  CAS  Google Scholar 

  196. Stark GR, Taylor WR. Control of the G2/M transition. Molecular Biotechnology 2006; 32(3):227-48.

    PubMed  CAS  Google Scholar 

  197. Bourke E, Dodson H, Merdes A, Cuffe L, Zachos G, Walker M, Gillespie D, Morrison CG. DNA damage induces Chk1-dependent centrosome amplification. EMBO Reports 2007; 8 (6):603-9.

    PubMed  CAS  Google Scholar 

  198. Dodson H, Wheatley SP, Morrison CG. Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle (Georgetown, TX) 2007; 6(3):364-70.

    CAS  Google Scholar 

  199. Kawamura K, Fujikawa-Yamamoto K, Ozaki M, et al. Centrosome hyperamplification and chromosomal damage after exposure to radiation. Oncology 2004; 67(5-6):460-70.

    PubMed  CAS  Google Scholar 

  200. Kawamura K, Morita N, Domiki C, Fujikawa-Yamamoto K, Hashimoto M, Iwabuchi K, Suzuki K. Induction of centrosome amplification in p53 siRNA-treated human fibroblast cells by radiation exposure. Cancer Science 2006; 97(4):252-8.

    PubMed  CAS  Google Scholar 

  201. Sato N, Mizumoto K, Nakamura M, Ueno H, Minamishima YA, Farber JL, Tanaka M. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 2000; 19(46):5281-90.

    PubMed  CAS  Google Scholar 

  202. Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. The Journal of Cell Biology 1997; 138(3):615-28.

    PubMed  CAS  Google Scholar 

  203. Loffler H, Lukas J, Bartek J, Kramer A. Structure meets function-centrosomes, genome maintenance and the DNA damage response. Experimental cell research 2006;312(14):2633-40.

    PubMed  Google Scholar 

  204. Stewenius Y, Gorunova L, Jonson T, et al. Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proceedings of the National Academy of Sciences of the United States of America 2005; 102(15):5541-6.

    PubMed  CAS  Google Scholar 

  205. Dodson H, Bourke E, Jeffers LJ, et al. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. The EMBO Journal 2004; 23 (19):3864-73.

    PubMed  CAS  Google Scholar 

  206. Blagosklonny MV. Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle (Georgetown, TX) 2007; 6(1):70-4.

    CAS  Google Scholar 

  207. Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nature Reviews 2001; 1(2):109-17.

    PubMed  CAS  Google Scholar 

  208. Zhivotovsky B, Orrenius S. Caspase-2 function in response to DNA damage. Biochemical and Biophysical Research Communications 2005; 331(3):859-67.

    PubMed  CAS  Google Scholar 

  209. Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 2005; 8(1):7-12.

    PubMed  CAS  Google Scholar 

  210. Yamada HY, Gorbsky GJ. Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Molecular Cancer Therapeutics 2006; 5(12):2963-9.

    PubMed  CAS  Google Scholar 

  211. Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Developmental Cell 2004; 7(5):637-51.

    PubMed  CAS  Google Scholar 

  212. Castedo M, Coquelle A, Vivet S, et al. Apoptosis regulation in tetraploid cancer cells. The EMBO Journal 2006; 25(11):2584-95.

    PubMed  CAS  Google Scholar 

  213. Uetake Y, Sluder G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. The Journal of Cell Biology 2004; 165(5):609-15.

    PubMed  CAS  Google Scholar 

  214. Blagosklonny MV, Demidenko ZN, Giovino M, Szynal C, Donskoy E, Herrmann RA, Barry JJ, Whalen AM. Cytostatic activity of paclitaxel in coronary artery smooth muscle cells is mediated through transient mitotic arrest followed by permanent post-mitotic arrest: comparison with cancer cells. Cell Cycle (Georgetown, TX) 2006; 5(14):1574-9.

    CAS  Google Scholar 

  215. Klein LE, Freeze BS, Smith AB, 3rd, Horwitz SB. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle (Georgetown, TX) 2005; 4(3):501-7.

    CAS  Google Scholar 

  216. Casenghi M, Mangiacasale R, Tuynder M, et al. p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Experimental Cell Research 1999; 250(2):339-50.

    PubMed  CAS  Google Scholar 

  217. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays 1995; 17(6):537-43.

    PubMed  CAS  Google Scholar 

  218. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 1995; 92(20):9363-7.

    PubMed  CAS  Google Scholar 

  219. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE. Ink4a/Arf expression is a biomarker of aging. The Journal of Clinical Investigation 2004; 114 (9):1299-307.

    PubMed  CAS  Google Scholar 

  220. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. The International Journal of Biochemistry & Cell Biology 2005; 37(5):961-76.

    CAS  Google Scholar 

  221. van Heemst D, den Reijer PM, Westendorp RG. Ageing or cancer: a review on the role of caretakers and gatekeepers. European Journal of Cancer 2007; 43(15):2144-52.

    PubMed  Google Scholar 

  222. Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK. Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Experimental Cell Research 2000; 258(2):270-8.

    PubMed  CAS  Google Scholar 

  223. Yoon IK, Kim HK, Kim YK, et al. Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology. Experimental Gerontology 2004; 39(9):1369-78.

    PubMed  CAS  Google Scholar 

  224. Quick QA, Gewirtz DA. An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells. Journal of Neurosurgery 2006; 105(1):111-8.

    PubMed  CAS  Google Scholar 

  225. Igarashi K, Sakimoto I, Kataoka K, Ohta K, Miura M. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells. Experimental Cell Research 2007; 313(15):3326-36.

    PubMed  CAS  Google Scholar 

  226. Baehrecke EH. How death shapes life during development. Nature Reviews. Molecular Cell Biology 2002; 3(10):779-87.

    PubMed  CAS  Google Scholar 

  227. Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Current opinion in cell biology 2005;17(4):415-22.

    PubMed  CAS  Google Scholar 

  228. Levine B, Yuan J. Autophagy in cell death: an innocent convict? The Journal of Clinical Investigation 2005; 115(10):2679-88.

    PubMed  CAS  Google Scholar 

  229. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Annals of the New York Academy of Sciences 2000; 926:1-12.

    Article  PubMed  CAS  Google Scholar 

  230. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation 2003; 112(12):1809-20.

    PubMed  CAS  Google Scholar 

  231. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science (New York) 2004; 304 (5676):1500-2.

    CAS  Google Scholar 

  232. Yu L, Lenardo MJ, Baehrecke EH. Autophagy and caspases: a new cell death program. Cell Cycle (Georgetown, TX) 2004; 3(9):1124-6.

    CAS  Google Scholar 

  233. Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death and Differentiation 2007; 14(3):548-58.

    PubMed  CAS  Google Scholar 

  234. Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, Lu B. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. The Journal of Biological Chemistry 2006; 281(48):36883-90.

    PubMed  CAS  Google Scholar 

  235. Paglin S, Yahalom J. Pathways that regulate autophagy and their role in mediating tumor response to treatment. Autophagy 2006; 2(4):291-3.

    PubMed  CAS  Google Scholar 

  236. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. International Journal of Oncology 2005; 26(5):1401-10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torgny Stigbrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Eriksson, D., Riklund, K., Johansson, L., Stigbrand, T. (2008). Radiation Induced Cell Deaths. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_12

Download citation

Publish with us

Policies and ethics