Skip to main content

The Auger Effect in Molecular Targeting Therapy

  • Chapter
Book cover Targeted Radionuclide Tumor Therapy

Summary

Knowledge on the physical and biological aspects of Auger-electron emission is described and the major attempts to use such emitters in cancer therapy are discussed. Focus is on the need for nuclear localization of the Auger-electron emitters, i.e. preferably targeting the nuclear DNA, to have a good therapy effect. Delivery of Auger-electron emitters using nucleoside analogues, DNA-intercalators, minor groove binders, hormone receptor ligands and oligonucleotides are described as well as the need for nuclear localization signals in peptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SSB:

Single-strand break (in DNA)

DSB:

Double-strand break (in DNA)

BrdUR:

Bromodeoxyuridine

IdUR:

Iododeoxyuridine

RBE:

Relative biological effectiveness

ER:

Estrogen receptor

TFO:

Triplex-forming ologonucleotides

DMSO:

Dimethyl sulfoxide (radical scavenger)

Mbp:

Mega base pair

D0 :

Cell survival parameter that describes the exponential part of a cell survival curve of type n = no *e−D/D o

SPECT:

Single photon emission computed tomography

PET:

Positron emission tomography

NLS:

Nuclear localizing signal

References

  1. Auger, P. (1925) Sur les rayons b secondaires produits dans un gaz par des rayons X. In Comptes Rendues Hebdomadaires des Seances de l’Academie des Sciences, vol. 180, pp. 65-8.

    Google Scholar 

  2. Humm, J.L., Howell, R.W. and Rao, D.V. (1994) Dosimetry of Auger-electron-emitting radionuclides: report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys, 21, 1901-15.

    Article  PubMed  Google Scholar 

  3. Pomplun, E. and Sutmann, G. (2004) Is coulomb explosion a damaging mechanism for (125)IUdR? Int J Radiat Biol, 80, 855-60.

    Article  PubMed  Google Scholar 

  4. Hofer, K.G. (2000) Biophysical aspects of Auger processes. Acta Oncol, 39, 651-7.

    Article  PubMed  Google Scholar 

  5. Warters, R.L., Hofer, K.G., Harris, C.R. and Smith, J.M. (1978) Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage. Curr Top Radiat Res Q, 12, 389-407.

    PubMed  Google Scholar 

  6. Hofer, K.G., Prensky, W. and Hughes, W.L. (1969) Death and metastatic distribution of tumor cells in mice monitored with 125I-iododeoxy-uridine. J Natl Cancer Inst, 43, 763-73.

    PubMed  Google Scholar 

  7. Ertl, H.H., Feinendegen, L.E. and Heiniger, H.J. (1970) Iodine-125, a tracer in cell biology: physical properties and biological aspects. Phys Med Biol, 15, 447-56.

    Article  PubMed  Google Scholar 

  8. Krisch, R.E. and Ley, R.D. (1974) Induction of lethality and DNA breakage by the decay of iodine-125 in bacteriophage T4. Int J Radiat Biol Relat Stud Phys Chem Med, 25, 21-30.

    Article  PubMed  Google Scholar 

  9. Painter, R.B., Young, B.R. and Burk, H.J. (1974) Non-repairable strand breaks induced by 125I incorporated into mammalian DNA. Proc Natl Acad Sci USA, 71, 4836-8.

    Article  PubMed  Google Scholar 

  10. Martin, R.F. and Haseltine, W.A. (1981) Range of radiochemical damage to DNA with decay of iodine-125. Science, 213, 896-8.

    Article  PubMed  Google Scholar 

  11. Adelstein, S.J. and Kassis, A.I. (1996) Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides. Acta Oncol, 35, 797-801.

    Article  PubMed  Google Scholar 

  12. Kassis, A.I., Harapanhalli, R.S. and Adelstein, S.J. (1999) Comparison of strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125. Radiat Res, 151, 167-76.

    Article  PubMed  Google Scholar 

  13. Sahu, S.K., Kortylewicz, Z.P., Baranowska-Kortylewicz, J., Taube, R.A., Adelstein, S.J. and Kassis, A.I. (1997) Strand breaks after the decay of iodine-125 in proximity to plasmid pBR322 DNA. Radiat Res, 147, 401-8.

    Article  PubMed  Google Scholar 

  14. Kassis, A.I., Harapanhalli, R.S. and Adelstein, S.J. (1999) Strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125: direct compared to indirect effects. Radiat Res, 152, 530-8.

    Article  PubMed  Google Scholar 

  15. Bishayee, A., Rao, D.V., Bouchet, L.G., Bolch, W.E. and Howell, R.W. (2000) Protection by DMSO against cell death caused by intracellularly localized iodine-125, iodine-131 and polonium-210. Radiat Res, 153, 416-27.

    Article  PubMed  Google Scholar 

  16. Walicka, M.A., Adelstein, S.J. and Kassis, A.I. (1998) Indirect mechanisms contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: double-strand breaks. Radiat Res, 149, 134-41.

    Article  PubMed  Google Scholar 

  17. Walicka, M.A., Adelstein, S.J. and Kassis, A.I. (1998) Indirect mechanisms contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: clonogenic survival. Radiat Res, 149, 142-6.

    Article  PubMed  Google Scholar 

  18. Elmroth, K. and Stenerlow, B. (2005) DNA-incorporated 125I induces more than one doublestrand break per decay in mammalian cells. Radiat Res, 163, 369-73.

    Article  PubMed  Google Scholar 

  19. Hofer, K.G., Lin, X. and Schneiderman, M.H. (2000) Paradoxical effects of iodine-125 decays in parent and daughter DNA: a new target model for radiation damage. Radiat Res, 153, 428-35.

    Article  PubMed  Google Scholar 

  20. Elmroth, K. and Stenerlöw, B. (2007) Influence of chromatin structure on double-strand break induction in mammalian cells irradiated with DNA-incorporated 125-I. Radiat Res, 168, 312-318.

    Article  Google Scholar 

  21. Kassis, A.I. (2004) The amazing world of auger electrons. Int J Radiat Biol, 80, 789-803.

    Article  PubMed  Google Scholar 

  22. Adelstein, S.J., Kassis, A.I., Bodei, L. and Mariani, G. (2003) Radiotoxicity of iodine-125 and other auger-electron-emitting radionuclides: background to therapy. Cancer Biother Radiopharm, 18, 301-16.

    Article  PubMed  Google Scholar 

  23. O’Donoghue, J.A. and Wheldon, T.E. (1996) Targeted radiotherapy using Auger electron emitters. Phys Med Biol, 41, 1973-92.

    Article  PubMed  Google Scholar 

  24. Bloomer, W.D. and Adelstein, S.J. (1975) Letter: antineoplastic effect of iodine-125-labelled iododeoxyuridine. Int J Radiat Biol Relat Stud Phys Chem Med, 27, 509-11.

    Article  PubMed  Google Scholar 

  25. Bloomer, W.D. and Adelstein, S.J. (1977) 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters. Nature, 265, 620-1.

    Article  PubMed  Google Scholar 

  26. Baranowska-Kortylewicz, J., Makrigiorgos, G.M., Van den Abbeele, A.D., Berman, R.M., Adelstein, S.J. and Kassis, A.I. (1991) 5-[123I]iodo-2′-deoxyuridine in the radiotherapy of an early ascites tumor model. Int J Radiat Oncol Biol Phys, 21, 1541-51.

    PubMed  Google Scholar 

  27. Xue, L.Y., Butler, N.J., Makrigiorgos, G.M., Adelstein, S.J. and Kassis, A.I. (2002) Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA, 99, 13765-70.

    Article  PubMed  Google Scholar 

  28. Kishikawa, H., Wang, K., Adelstein, S.J. and Kassis, A.I. (2006) Inhibitory and stimulatory bystander effects are differentially induced by Iodine-125 and Iodine-123. Radiat Res, 165, 688-94.

    Article  PubMed  Google Scholar 

  29. Kassis, A.I., Adelstein, S.J., Haydock, C., Sastry, K.S., McElvany, K.D. and Welch, M.J. (1982) Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells. Radiat Res, 90, 362-73.

    Article  PubMed  Google Scholar 

  30. Makrigiorgos, G.M., Kassis, A.I., Baranowska-Kortylewicz, J., McElvany, K.D., Welch, M.J., Sastry, K.S. and Adelstein, S.J. (1989) Radiotoxicity of 5-[123I]iodo-2′-deoxyuridine in V79 cells: a comparison with 5-[125I]iodo-2′-deoxyuridine. Radiat Res, 118, 532-44.

    Article  PubMed  Google Scholar 

  31. Bodei, L., Kassis, A.I., Adelstein, S.J. and Mariani, G. (2003) Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother Radiopharm, 18, 861-77.

    Article  PubMed  Google Scholar 

  32. Mairs, R.J., Wideman, C.L., Angerson, W.J., Whateley, T.L., Reza, M.S., Reeves, J.R., Robertson, L.M., Neshasteh-Riz, A., Rampling, R., Owens, J., Allan, D. and Graham, D.I. (2000) Comparison of different methods of intracerebral administration of radioiododeoxyuridine for glioma therapy using a rat model. Br J Cancer, 82, 74-80.

    Article  PubMed  Google Scholar 

  33. Reza, M.S. and Whateley, T.L. (1998) Iodo-2′-deoxyuridine (IUdR) and 125IUdR loaded biodegradable microspheres for controlled delivery to the brain. J Microencapsul, 15, 789-801.

    Article  PubMed  Google Scholar 

  34. Martin, R.F. (1977) Induction of double-stranded breaks in DNA by binding with an 125ilabelled acridine. Int J Radiat Biol Relat Stud Phys Chem Med, 32, 491-7.

    Article  PubMed  Google Scholar 

  35. Kassis, A.I., Fayad, F., Kinsey, B.M., Sastry, K.S. and Adelstein, S.J. (1989) Radiotoxicity of an 125I-labeled DNA intercalator in mammalian cells. Radiat Res, 118, 283-94.

    Article  PubMed  Google Scholar 

  36. Martin, R.F., Bradley, T.R. and Hodgson, G.S. (1979) Cytotoxicity of an 125I-labeled DNAbinding compound that induces double-stranded DNA breaks. Cancer Res, 39, 3244-7.

    PubMed  Google Scholar 

  37. Areberg, J., Norrgren, K. and Mattsson, S. (1999) Absorbed doses to patients from 191Pt-, 193mPt- and 195mPt-cisplatin. Appl Radiat Isot, 51, 581-6.

    Article  PubMed  Google Scholar 

  38. Howell, R.W., Kassis, A.I., Adelstein, S.J., Rao, D.V., Wright, H.A., Hamm, R.N., Turner, J.E. and Sastry, K.S. (1994) Radiotoxicity of platinum-195m-labeled trans-platinum (II) in mammalian cells. Radiat Res, 140, 55-62.

    Article  PubMed  Google Scholar 

  39. Chaires, J.B., Herrera, J.E. and Waring, M.J. (1990) Preferential binding of daunomycin to 5′ATCG and 5′ATGC sequences revealed by footprinting titration experiments. Biochemistry, 29, 6145-53.

    Article  PubMed  Google Scholar 

  40. Wang, A.H., Ughetto, G., Quigley, G.J. and Rich, A. (1987) Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution. Biochemistry, 26, 1152-63.

    Article  PubMed  Google Scholar 

  41. Ickenstein, L.M., Edwards, K., Sjoberg, S., Carlsson, J. and Gedda, L. (2006) A novel 125Ilabeled daunorubicin derivative for radionuclide-based cancer therapy. Nucl Med Biol, 33, 773-83.

    Article  PubMed  Google Scholar 

  42. Kullberg, E.B., Wei, Q., Capala, J., Giusti, V., Malmstrom, P.U. and Gedda, L. (2005) EGFreceptor targeted liposomes with boronated acridine: growth inhibition of cultured glioma cells after neutron irradiation. Int J Radiat Biol, 81, 621-9.

    Article  PubMed  Google Scholar 

  43. Murray, V. and Martin, R.F. (1988) Sequence specificity of 125I-labelled Hoechst 33258 in intact human cells. J Mol Biol, 201, 437-42.

    Article  PubMed  Google Scholar 

  44. Lobachevsky, P.N. and Martin, R.F. (2004) Plasmid DNA breakage by decay of DNA-associated auger emitters: experiments with 123I/125I-iodoHoechst 33258. Int J Radiat Biol, 80, 915-20.

    Article  PubMed  Google Scholar 

  45. Harapanhalli, R.S., McLaughlin, L.W., Howell, R.W., Rao, D.V., Adelstein, S.J. and Kassis, A.I. (1996) [125I/127I]iodoHoechst 33342: synthesis, DNA binding, and biodistribution. J Med Chem, 39, 4804-9.

    Article  PubMed  Google Scholar 

  46. Yasui, L.S., Chen, K., Wang, K., Jones, T.P., Caldwell, J., Guse, D. and Kassis, A.I. (2007) Using Hoechst 33342 to target radioactivity to the cell nucleus. Radiat Res, 167, 167-75.

    Article  PubMed  Google Scholar 

  47. Chen, K., Adelstein, S.J. and Kassis, A.I. (2004) Molecular simulation of ligand-binding with DNA: implications for 125I-labeled pharmaceutical design. Int J Radiat Biol, 80, 921-6.

    Article  PubMed  Google Scholar 

  48. Bronzert, D.A., Hochberg, R.B. and Lippman, M.E. (1982) Specific cytotoxicity of 16 alpha[125I]iodoestradiol for estrogen receptor-containing breast cancer cells. Endocrinology, 110, 2177-82.

    Article  PubMed  Google Scholar 

  49. Yasui, L., Hughes, A. and DeSombre, E. (2001) Relative biological effectiveness of accumulated 125IdU and 125I-estrogen decays in estrogen receptor-expressing MCF-7 human breast cancer cells. Radiat Res, 155, 328-34.

    Article  PubMed  Google Scholar 

  50. DeSombre, E.R., Shafii, B., Hanson, R.N., Kuivanen, P.C. and Hughes, A. (1992) Estrogen receptor-directed radiotoxicity with Auger electrons: specificity and mean lethal dose. Cancer Res, 52, 5752-8.

    PubMed  Google Scholar 

  51. DeSombre, E.R., Harper, P.V., Hughes, A., Mease, R.C., Gatley, S.J., DeJesus, O.T. and Schwartz, J.L. (1988) Bromine-80m radiotoxicity and the potential for estrogen receptordirected therapy with auger electrons. Cancer Res, 48, 5805-9.

    PubMed  Google Scholar 

  52. Kearney, T., Hughes, A., Hanson, R.N. and DeSombre, E.R. (1999) Radiotoxicity of Auger electron-emitting estrogens in MCF-7 spheroids: a potential treatment for estrogen receptorpositive tumors. Radiat Res, 151, 570-9.

    Article  PubMed  Google Scholar 

  53. Panyutin, I.G. and Neumann, R.D. (2005) The potential for gene-targeted radiation therapy of cancers. Trends Biotechnol, 23, 492-6.

    Article  PubMed  Google Scholar 

  54. Sedelnikova, O.A., Luu, A.N., Karamychev, V.N., Panyutin, I.G. and Neumann, R.D. (2001) Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for antigene radiotherapy. Int J Radiat Oncol Biol Phys, 49, 391-6.

    Article  PubMed  Google Scholar 

  55. Sedelnikova, O.A., Panyutin, I.V., Neumann, R.D., Bonner, W.M. and Panyutin, I.G. (2004) Assessment of DNA damage produced by 125I-triplex-forming oligonucleotides in cells. Int J Radiat Biol, 80, 927-31.

    Article  PubMed  Google Scholar 

  56. Chen, P., Wang, J., Hope, K., Jin, L., Dick, J., Cameron, R., Brandwein, J., Minden, M. and Reilly, R.M. (2006) Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med, 47, 827-36.

    PubMed  Google Scholar 

  57. Ginj, M., Hinni, K., Tschumi, S., Schulz, S. and Maecke, H.R. (2005) Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using auger electron emitters. J Nucl Med, 46, 2097-103.

    PubMed  Google Scholar 

  58. Janson, E.T., Westlin, J.E., Ohrvall, U., Oberg, K. and Lukinius, A. (2000) Nuclear localization of 111In after intravenous injection of [111In-DTPA-D-Phe1]-octreotide in patients with neuroendocrine tumors. J Nucl Med, 41, 1514-8.

    PubMed  Google Scholar 

  59. Reilly, R.M., Kiarash, R., Cameron, R.G., Porlier, N., Sandhu, J., Hill, R.P., Vallis, K., Hendler, A. and Gariepy, J. (2000) 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med, 41, 429-38.

    PubMed  Google Scholar 

  60. Stepanek, J., Ilvonen, S.A., Kuronen, A.A., Lampinen, J.S., Savolainen, S.E. and Valimaki, P.J. (2000) Radiation spectra of 111In, 113mIn and 114mIn. Acta Oncol, 39, 667-71.

    Article  PubMed  Google Scholar 

  61. Stepanek, J., Larsson, B. and Weinreich, R. (1996) Auger-electron spectra of radionuclides for therapy and diagnostics. Acta Oncol, 35, 863-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Lundqvist, H., Stenerlöw, B., Gedda, L. (2008). The Auger Effect in Molecular Targeting Therapy. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_11

Download citation

Publish with us

Policies and ethics