The Distribution of Atmospheric Aerosols: Transport, Transformation and Removal

  • Sunling Gong
  • Leonard A. Barrie


Because the time for air parcels to circle the Earth on winds in the troposphere is of the same order of magnitude as the residence time of atmospheric aerosols, there is no location on the globe that is not influenced by aerosol sources. Once released into the atmosphere from primary production or produced via gas-to-particle conversion (for source details, see Chapter 3), aerosols are subject to many processes that affect their global distribution, chemical and physical properties, and hence their influence on climate, weather, human health and ecosystems. They are dispersed in the atmosphere through processes of advection, convection and turbulence. They are also transformed and removed by physical and chemical processes involving clouds, precipitation as well as processes occurring in cloud-free air. During the life cycle of an aerosol in the atmosphere, gas to particle conversion and mixing of aerosols from different sources changes the chemical, physical and optical properties of the original aerosols.


Aerosol Optical Depth Biomass Burning Atmospheric Aerosol PM10 Concentration Dust Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Yienger, J.J., M. Galanter, T.A. Holloway, M.J. Phandnis, S.K. Guttikunda, G.R. Carmichael, W.J. Moxim, and H.L. Levi II, The episodic nature of air pollution transport from Asia to North America, J. Geophys. Res., 105, 26,931–926,945, 2000.Google Scholar
  2. Zhang, Q., C.O. Stanier, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, S.N. Pandis, and J.L. Jimenez, Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry, Environ. Sci. Technol., 38, 4797–4809, 2004a.Google Scholar
  3. Kulmala, M., A. Majerowicz, and P.E. Wagner, Condensational growth at large vapour concentration: limits of applicability of the Mason equation, J. Aerosol Sci., 20, 1023–1026, 1989.Google Scholar
  4. VanCuren, R.A., and T.A. Cahill, Asian aerosols in North America: Frequency and concentration of fine dust, J. Geophy. Res. Atmos., 107, 4804, doi:10.1029/2002JD002204, 2002.Google Scholar
  5. Nicholson, K.W., The dry deposition of small particles: A review of experimental measurements, Atmos. Environ., 22, 2653–2666, 1988.Google Scholar
  6. Barrie, L.A., Arctic air pollution: An overview of current knowledge, Atmos. Environ., 20, 643–663, 1986.Google Scholar
  7. Pankow, J.F., Review and Comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, Atmos. Environ., 21, 2275–2283, 1987.Google Scholar
  8. Methven, J., S.R. Arnold, A. Stohl, M.J. Evans, M. Avery, K. Law, A.C. Lewis, P.S. Monks, D. Parrish, C. Reeves, H. Schlager, E. Atlas, D. Blake, H. Coe, R.C. Cohen, J. Crosier, F. Flocke, J.S. Holloway, J.R. Hopkins, G. Hübler, J.D. Lee, R. Purvis, B. Rappenglück, T.B. Ryerson, G.W. Sachse, H. Singh, N. Watson, L. Whalley, and P. Williams, Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the ICARTT experiment, J. Geophys. Res., 111, D23S62, doi:10.1029/2006JD007540, 2006.Google Scholar
  9. Barrie, L.A, Arctic air pollution: A case study of continent-to-ocean-to-continent transport, in The Long-Range Atmospheric Transport of Natural and Contaminant Substances, edited by A.H. Knap, and M.S. Kaiser, pp. 137–148, Kluwer Academic Publishers, Dordrecht, Holland, 1990.Google Scholar
  10. Jennings, S.G., Wet processes affecting atmospheric aerosols, Chapter 14, in Atmospheric Particles, edited by R.M. Harrison, and R. Van Grieken, pp. 476–507, Wiley, New York, 1998.Google Scholar
  11. Evan, A.T., J. Dunion, J.A. Foley, A.K. Heidinger, and C.S. Velden, New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks, Geophys. Res. Lett., 33, L19813–19810. 11029/12006GL026408, 2006.Google Scholar
  12. Chylek, P., M.K. Dubey, U. Lohmann, V. Ramanathan, Y.J. Kaufman, G. Lesins, J. Hudson, G. Altmann, and S.C. Olsen, Aerosol indirect effect over the Indian Ocean, Geophys. Res. Lett., 33, L06806, doi:10.1029/2005GL025397, 2006Google Scholar
  13. Uno, I., Z. Wang, M. Chiba, Y.S. Chun, S.L. Gong, Y. Hara, E. Jung, S.S. Lee, M. Liu, M. Mikami, S. Music, S. Nickovic, S. Satake, Y. Shao, Z. Song, N. Sugimoto, T. Tanaka, and D.L. Westphal, Dust Model Intercomparison (DMIP) study over Asia: Overview, J. Geophys. Res., 111, D12213, doi:12210.11029/12005JD006575, 2006.Google Scholar
  14. Popovitcheva, O.B., M.E. Trukhin, N.M. Persiantseva, and N.K. Shonija, Water adsorption on aircraft-combustor soot under young plume conditions, Atmos. Environ., 35, 1673–1676, 2001.Google Scholar
  15. Strawbridge, K.B., and B.J. Snyder, Planetary boundary layer height determination during Pacific 2001 using the advantage of a scanning lidar instrument, Atmos Environ., 38, 5861–5871, 2004.Google Scholar
  16. Davison, P.S., D.L. Roberts, R.T. Arnold, and R.N. Colvile, Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia, J. Geophys. Res., 109, D10207, doi:10210.11029/12003JD004264, 2004.Google Scholar
  17. Perry, K.D., T.A. Cahill, R.A. Eldred, D.D. Dutcher, and T.E. Gill,. Long-range transport of North African dust to the eastern United States, J. Geophys. Res., 102, 11,225–211,238, 1997.Google Scholar
  18. Zhao, T.L., S.L. Gong, X.Y. Zhang, J.P. Blanchet, I.G. McKendry, and Z.J. Zhou, A simulated climatology of asian dust aerosol and its trans-pacific transport. 1: Mean climate and validation, J. Clim., 19, 88–103, 2006.Google Scholar
  19. Husar, R.B., D.M. Tratt, B.A. Schichtel, S.R. Falke, F. Li, D. Jaffe, S. Gassó, T. Gill, N.S. Laulainen, F. Lu, M.C. Reheis, Y. Chun, D. Westphal, B.N. Holben, C. Gueymard, I. McKendry, N. Kuring, G.C. Feldman, C. McClain, R.J. Frouin, J. Merrill, D. DuBois, F. Vignola, T. Murayama, S. Nickovic, W.E. Wilson, K. Sassen, N. Sugimoto, and W.C. Malm, Asian dust evens of April 1998, J. Geophys. Res., 106, 18,317–18,330, 2001.Google Scholar
  20. Lohmann, U., W.R. Leaitch, L. Barrie, K. Law, Y. Yi, D. Bergmann, C. Bridgeman, M. Chin, J. Christensen, R. Easter, J. Feichter, A. Jeuken, E. Kjellstrom, D. Koch, P. Rasch, and G.J. Roelofs, Vertical distributions of sulfur species simulated by large scale atmospheric models in COSAM: Comparison with observations, Tellus B., 53, 646–672, 2001.Google Scholar
  21. Arimoto, R., Y.J. Kim, Y.P. Kim, P.K. Quinn, T.S. Bates, T.L. Anderson, S.L. Gong, M.C.I. Uno, B.J. Huebert, A.D. Clarke, Y. Shinozuka, R.J. Weber, J.R. Anderson, S.A. Guazzotti, R.C. Sullivan, D.A. Sodeman, K.A. Prather, and I. Sokolik, Characterization of Asian Dust during ACE-Asia, Global Planet. Change, 52, 23–56, 2006.Google Scholar
  22. Murakami, M., K. Kikuchi, and C. Magono, Experiments on aerosol scavenging by natural snow crystals. Part I: Collection efficiency of uncharged snow crystals for micron and sub-micron particles, J. Meteor. Soc. of Japan., 63, 119–128, 1985.Google Scholar
  23. Jickells, T.D., Z.S. An, K.K. Andersen, A.R. Baker, G. Bergametti, N. Brooks, P.W.B.J.J. Cao, R.A. Duce, K.A. Hunter, H. Kawahata, N. Kubilay, J. LaRoche, P.S. Liss, N. Mahowald, J.M. Prospero, A.J. Ridgwell, L. Tegen, and R. Torres, Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, 2005.Google Scholar
  24. Lelieveld, J., H. Berresheim, S. Borrmann, P.J. Crutzen, F.J. Dentener, H. Fischer, J. Feichter, P.J. Flatau, J. Heland, R. Holzinger, R. Korrmann, M.G. Lawrence, Z. Levin, K.M. Markowicz, N. Mihalopoulos, A. Minikin, V. Ramanathan, M. deReus, G.J. Roelofs, H.A. Scheeren, J. Sciare, H. Schlager, M. Schultz, P. Siegmund, B. Steil, E.G. Stephanou, P. Stier, M. Traub, C. Warneke, J. Williams, and H. Ziereis, Global air pollution crossroads over the Mediterranean, Science, 298, 794–799, 2002.Google Scholar
  25. Tompkins, A.M., C. Cardinali, J.J. Morcrette, and M. Rodwell, Influence of aerosol climatology on forecasts of the African Easterly Jet, Geophy. Res. Lett., 32, L10801, doi:10810.11029/12004GL022189, 2005.Google Scholar
  26. Swap, R.J., H.J. Annegarn, J.T. Suttles, M.D. King, S. Platnick, J.L. Privette, and R.J. Scholes, Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), J. Geophys. Res., 108, 8465, doi:8410.1029/2003JD003747, 2003.Google Scholar
  27. Stier, P., J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, O. Boucher, A. Minikin, and A. Petzold, The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, 2005.Google Scholar
  28. Schery, S.D., and S. Whittlestone, Evidence of high deposition of ultrafine particles at Mauna Loa Observatory, Atmos. Environ., 29, 3319–3324, 1995.Google Scholar
  29. McNaughton, C.S., A.D. Clarke, S.G. Howell, K.G.M. II, V. Brekhovskikh, R.J. Weber, D.A. Orsini, D.S. Covert, G. Buzorius, F.J. Brechtel, G.R. Carmichael, Y. Tang, F.L. Eisele, R.L. Mauldin, A.R. Bandy, D.C. Thornton, and B. Blomquist, Spatial distribution and size evolution of particles in Asian outflow: Significance of primary and secondary aerosols during ACE-Asia and TRACE-P, J. Geophys. Res., 109, D19S06, doi:10.1029/2003JD003528, 2004.Google Scholar
  30. Zhang, X.Y., Y.Q. Wang, D. Wang, S.L. Gong, R. Arimoto, L.J. Mao, and J.Li, Characterization and sources of regional-scale transported carbonaceous and dust aerosols from different pathways in costal and sandy land areas of China, J. Geophys. Res., 110, D15301, doi:10.1029/2004JD005457, 2005a.Google Scholar
  31. Pankow, J.F., and T.F. Bidleman, Effects of temperature, TSP and percent non-exchangeable material in determining the gas-particle partitioning of organic compounds, Atmos. Environ., 25A, 2241–2249, 1991.Google Scholar
  32. Hegg, D.A., and P.V. Hobbs, Cloud condensation nuclei in the marine atmosphere, in Nucleation and atmospheric aerosols, edited by N. Eukuta, and P.E. Wagner, pp. 181–192, A. Deepak Publishing, Hampton, VA, 1992.Google Scholar
  33. Park, S.H., and K.W. Lee, Condensational growth of polydisperse aerosol for the entire particle size range, Aerosol Sci. Tech., 33, 222–227, 2000.Google Scholar
  34. Kojima, T., P.R. Buseck, J.C. Wilson, J.M. Reeves, and M.J. Mahoney, Aerosol particles from tropical convective systems: Cloud tops and cirrus anvils – Art, J. Geophys. Res. Atmos., 109, 12201, 2004.Google Scholar
  35. Christensen, J.H., The Danish Eulerian Hemispheric ModelAa three-dimensional air pollution model used for the Arctic, Atmos. Environ., 31, 4169–4191, 1997.Google Scholar
  36. McCormick, M.P., D.M. Winker, E.V. Browell, J.A. Coakley, C.S. Gardner, R.M. Hoff, G.S. Kent, S.H. Melfi, R.T. Menzies, C.M.R. Platt, D.A. Randall, and J.A. Reagan, Scientific investigations planned for the Lidar In-space Technology Experiment (LITE), Bull. Amer. Meteorol. Soc., 74, 205–214, 1993.Google Scholar
  37. Rasch, P.J., J. Feichter, K. Law, N. Mahowald, J. Penner, C. Benkovitz, C. Genthon, C. Giannakopoulos, P. Kasibhatla, D. Koch, H. Levy, T. Maki, M. Prather, D.L. Roberts, G.J. Roelofs, D. Stevenson, Z. Stockwell, S. Taguchi, M. Kritz, M. Chipperfield, D. Baldocchi, P. McMurry, L. Barrie, Y. Balkansi, R. Chatfield, E. Kjellstrom, M. Lawrence, H.N. Lee, J. Lelieveld, K.J. Noone, J. Seinfeld, G. Stenchikov, S. Schwartz, C. Walcek, and D. Williamson, A comparison of scavenging and deposition processes in global models: Results from the WCRP Cambridge Workshop of 1995, Tellus B., 52, 1025–1056, 2000.Google Scholar
  38. Saxena, P., L.M. Hildemann, P.H. McMurry, and J.H. Seinfeld, Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100, 18,755–718,770, 1995.Google Scholar
  39. Malm, W.C., B.A. Schichtel, M.L. Pitchford, L.L. Ashbaugh, and R.A. Eldred, Spatial and monthly trends in speciated fine particle concentration in the United States, J. Geophys. Res., 109, D03306, doi:10.1029/2003JD003739, 2004.Google Scholar
  40. Davenport, H.M., and L.K. Peters, Field studies of atmospheric particulate concentration changes during precipitation, Atmos. Environ., 12, 997–1008, 1978.Google Scholar
  41. Fitzgerald, J.M., Marine aerosols: A review, Atmos. Environ., 25A, 533–545, 1991.Google Scholar
  42. Jung, C.H., Y.P. Kim, and K.W. Lee, A moment model for simulating raindrop scavenging of aerosols, Journal of Aerosol Science, 34, 1217–1233, 2003.Google Scholar
  43. Gao, S., N.L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J.W. He, K.Y. Yoo, J.L. Beauchamp, R.P. Hodyss, R.C. Flagan, and J.H. Seinfeld, Particle phase acidity and oligomer formation in secondary organic aerosol, Environ. Sci. Technol., 38, 6582–6589, 2004.Google Scholar
  44. Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J.E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, An AeroCom initial assessment – Optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815–1834, 2006.Google Scholar
  45. Bey, I., D.J. Jacob, J.A. Logan, and R.M. Yantosca, Asian chemical outflow to the Pacific: Origins, pathways and budgets, J. Geophys. Res., 106, 23,097–23,114, 2001.Google Scholar
  46. Seinfeld, J.H., and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1326 p., John Wiley, New York, 1998.Google Scholar
  47. Laskin, A., M. Iedema, A. Ichkovich, E. Graber, I. Taraniuk, and Y. Rudich, Direct observation of completely processed calcium carbonate dust particles, Faraday Discuss., 130, 453–468, 2005.Google Scholar
  48. Brooks, S.D., P.J. DeMott, and S.M. Kreidenweis, Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate, Atmos. Environ., 38, 1859–1868, 2004.Google Scholar
  49. Wesely, M.L., and B.B. Hicks, A review of the current status of knowledge on dry deposition, Atmos. Environ., 34, 2261–2282, 2000.Google Scholar
  50. Giorgi, F., A particle dry deposition parameterization scheme for use in tracer transport models, J. Geophys. Res., 91, 9794–9806, 1986.Google Scholar
  51. Jaffe, D., T. Anderson, D. Covert, R. Kotchenruther, B. Trost, J. Danielson, W. Simpson, T. Berntsen, S. Karlsdottir, D. Blake, J. Harris, G. Carmichael, and I. Uno, Transport of Asian air pollution to North America, Geophys. Res. Letts., 26, 711–714, 1999.Google Scholar
  52. Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, W.M. Washington, Q. Fu, D.R. Sikka, and M. Wild, Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, Proc. Nat. Acad. Sci., 102, 5326–5333, 2005.Google Scholar
  53. Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, I. Iversen, S. Kloster, D. Koch, A. Kirkevåg, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, T. Takemura, and X. Tie, Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, 2006.Google Scholar
  54. Rodriguez, M.A., and D. Dabdub, IMAGES-SCAPE2: A modeling study of size- and chemically resolved aerosol thermodynamics in a global chemical transport model, J. Geophys. Res., 109, D02203, doi:10.1029/2003JD003639, 2004.Google Scholar
  55. Zhao, T.L., S.L. Gong, X.Y. Zhang, and I.G. McKendry, Modelled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia, 2001: Implications for trans-pacific transport, J. Geophys. Res., 108, 8665, doi:8610.1029/2002JD003363, 2003.Google Scholar
  56. Gong, S.L., L.A. Barrie, J.P. Blanchet, K.V. Salzen, U. Lohmann, G. Lesins, L. Spacek, L.M. Zhang, E. Girard, H. Lin, R. Leaitch, H. Leighton, P. Chylek, and P. Huang, Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development, J. Geophys. Res., 108, 4007, doi:4010.1029/2001JD002002, 2003a.Google Scholar
  57. Matthias, V., D. Balis, J. Bosenberg, R. Eixmann, M. Iarlori, L. Komguem, I. Mattis, A. Papayannis, G. Pappalardo, M.R. Perrone, and X. Wang, Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations – Art. No. D18201, J. Geophys. Res. Atmos., 109, 18201, 2004.Google Scholar
  58. Pruppacher, H.R., and J.D. Klett, Microphysics of Clouds and Precipitation, pp. 954, Reidel, Dordrecht, 1997.Google Scholar
  59. Liggio, J., S.M. Li, and R. McLaren, Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters, Environ. Sci. Tech., 39, 1532–1541, 2005a.Google Scholar
  60. Couch, R.H., C.W. Rowland, K.S. Ellis, M.P. Blythe, C.R. Regan, M.R. Koch, C.W. Antill, W.L. Kitchen, J.W. Cox, J.F. DeLorme, S.K. Crockett, R.W. Remus, J.C. Casas, and W.H. Hunt, lidar In-space Technology Experiment (LITE): NASA's first in-space lidar system for atmospheric research, Opt. Eng., 30, 88–95, 1991.Google Scholar
  61. Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, New York, 1982.Google Scholar
  62. Gong, S.L., X.Y. Zhang, T.L. Zhao, X.B. Zhang, L.A. Barrie, I.G. McKendry, and C.S. Zhao, A simulated climatology of asian dust aerosol and its trans-pacific transport. 2: Interannual variability and climate connections, J. Climate, 19, 104–122, 2006.Google Scholar
  63. Kaufman, Y.J., I. Koren, L.A. Remer, D. Tanré, P. Ginoux, and S. Fan, Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean, J. Geophys. Res., 110, D10S12, doi:10.1029/2003JD004436, 2005a.Google Scholar
  64. Satake, S., I. Uno, T. Takemura, G.R. Carmichael, Y. Tang, D. Streets, N. Sugimoto, A. Shimizu, M. Uematsu, J.S. Han, and S. Ohta, Characteristics of Asian aerosol transport simulated with a regional-scale chemical transport model during the ACE-Asia observation, J. Geophys. Res. D: Atmos., 109, D19S22, 11–16, 2004.Google Scholar
  65. Ginoux, P., M. Chin, I. Tegen, J. Prospero, B.N. Holben, O. Dubovik, and S.J. Lin, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255–220,274, 2001.Google Scholar
  66. Baltensperger, U., M. Kalberer, J. Dommen, D. Paulsen, M. Alfarra, H. Coe, R. Fisseha, A. Gascho, M. Gysel, S. Nyeki, M. Sax, M. Steinbacher, A. Prevot, S. Sjoren, E. Weingartner, and R. Zenobi, Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265–278, 2005.Google Scholar
  67. Liggio, J., S.M. Li, and R. McLaren, Reactive uptake of glyoxyl on aerosols, J. Geophys. Res., 110, D10304, doi:10.1029/2004JD005113, 2005b.Google Scholar
  68. Jaffe, D., S. Tamura, and J. Harris, Seasonal cycle, composition and sources of background fine particles along the west coast of the U.S., Atmos. Environ., 39, 297–306, 2005.Google Scholar
  69. Abdul-Razzak, H., and S.J. Ghan, A parameterization of aerosol activation. Part 2: Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.Google Scholar
  70. Gallagher, M.W., K.M. Beswick, T.W. Choularton, J. Duyzer, H. Westrate, and P. Hummelshøj, Measurements of aerosol fluxes to speulderforest using a micrometeorological technique, Atmos. Environ., 31, 359–373, 1997.Google Scholar
  71. Che, H.Z., G.Y. Shi, X.Y. Zhang, R. Arimoto, J.Q. Zhao, L. Xu, B. Wang, and Z.H. Chen, Analysis of 40 years of solar radiation data from China, 1961–2000, Geophys. Res. Lett., 32, L06803, doi:06810.01029/02004GL022322, 2005.Google Scholar
  72. Andreae, M.O., P. Artaxo, H. Fischer, S.R. Freitas, J.M. Gregoire, A. Hansel, P. Hoor, R. Kormann, R. Krejci, L. Lange, J. Lelieveld, W. Lindinger, K. Longo, W. Peters, M. deReus, B. Scheeren, M.A.F.S. Dias, J. Strom, P.F.J. vanVelthoven, and J. Williams., Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophys. Res. Lett., 28, 951–954, 2001.Google Scholar
  73. Jang, M., B. Carroll, B. Chandramouli, and M.K. Richard, Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols, Environ. Sci. and Technol., 37, 3828–3837, 2003.Google Scholar
  74. Girard, E., and J.A. Curry, Simulation of arctic low-level clouds observed during the FIRE Arctic Clouds Experiment using a new bulk microphysics scheme, J. Geophys. Res. Atmospheres., 106, 15,139–15,154, 2001.Google Scholar
  75. Zuberi, B., K.S. Johnson, G.K. Aleks, L.T. Molina, and A. Laskin, Hydrophilic properties of aged soot, Geophys. Res. Lett., 32, L01807, doi:10.1029/2004GL021496, 2005.Google Scholar
  76. Nenes, A., and J.H. Seinfeld, Parameterization of cloud droplet formation in global climate models, J. Geophys. Res. D: Atmos., 108, 4415, doi:10.1029/2002JD002911, 2003.Google Scholar
  77. Radke, L.F., P.V. Hobbs, and M.W. Eltgroth, Scavenging of aerosol particles by precipitation., J. App. Meteor., 19, 715–722, 1980.Google Scholar
  78. Welch, H.E., D.C.G. Muir, B.N. Billeck, W.L. Lockhart, G.J. Brunskill, H.J. Kling, M.P. Olson, and R.M. Lemoine, Brown snow: A long range transport event in the Canadian Arctic, Environ. Sci. Technol., 25, 280–286, 1991.Google Scholar
  79. Hofschreuder, P., F.G. Römer, N.F.M. Van Leeuwen, and B.G. Arends, Deposition of aerosol on Speulder Forest: Accumulation experiments, Atmos. Environ., 31, 351–357, 1997.Google Scholar
  80. Levin, Z., E. Ganor, and V. Gladstein, The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean, J. Appl. Meteor., 35, 1511–1523, 1996.Google Scholar
  81. Procopio, A.S., P. Artaxo, Y.J. Kaufman, L.A. Remer, J.S. Schafer, and B.N. Holben, Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate, Geophys. Res. Lett., 31, L03108, doi:10.1029/2003GL018646, 2004.Google Scholar
  82. Brook, J.R., T.F. Dann, and R.T. Burnett, The relationship among TSP, PM10, PM2.5, and Inorganic constituents of atmospheric particulate matter at multiple Canadian locations, J. Air and Waste Manage. Assoc., 47, 2–19, 1997.Google Scholar
  83. Chate, D.M., Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events, Atmos. Environ., 39, 6608–6619, 2005.Google Scholar
  84. Melfi, S.H., J.D. Spinhirne, S.H. Chou, and P.S. Palm., Lidar observation of vertically organized convection in the planetary boundary layer over the ocean, J. Climate Appl. Meteor., 24, 806–821, 1985.Google Scholar
  85. Jordan, C.E., J.E. Dibb, B.E. Anderson, and H.E. Fuelberg, Uptake of nitrate and sulfate on dust aerosols during TRACE-P, J. Geophys. Res., 108, 8817, doi:8810.1029/2002JD003101, 2003.Google Scholar
  86. Nho-Kim, E.Y., M. Michou, and V.H. Peuch, Parameterization of size-dependent particle dry deposition velocities for global modeling, Atmos. Environ., 38, 1933–1942, 2004.Google Scholar
  87. Murphy, D.M., and D.S. Thomson, Chemical composition of single aerosol particles at Idaho Hill: Negative Ion Measurements, J. Geophys. Res., 102, 6341–6352, 1997.Google Scholar
  88. Usher, C.R., C.A. Cleveland Jr., D.R. Strongin, and M.A. Schoonen, Reactions on Mineral Dust, Chem. Rev., 103, 4883–4939, 2003.Google Scholar
  89. Turpin, B.J., P. Saxena, and E. Andrews, Measuring and simulating particulate organics in the atmosphere: Problems and prospects, Atmos. Environ., 34, 2983–3013, 2000.Google Scholar
  90. Eck, T.F., B.N. Holben, D.E. Ward, M.M. Mukelabai, O. Dubovik, A. Smirnov, J.S. Schafer, N.C. Ilsu, S.J. Piketh, A. Queface, J. LeRoux, R.J. Swap, and I. Slutsker, Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements – Art. No. 8477, J. Geophys. Res. Atmos., 108, 8477, 2003.Google Scholar
  91. Vet, R.J., J.R. Brook, T.F. Dann, and J. Dion, The Nature of PM2.5 Mass, Composition and Precursors in Canada, Meteorogical Service of Canada, Toronto, 2001.Google Scholar
  92. Sirois, A., and L.A. Barrie, Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995, J. Geophys. Res., 104, 11,599–11,618, 1999.Google Scholar
  93. Clarke, A.D., Y. Shinozuka, V.N. Kapustin, S. Howell, B. Huebert, S. Doherty, T. Anderson, D. Covert, J. Anderson, X. Hua, M.K.G. II, C. McNaughton, G. Carmichael, and R. Weber, Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties, J. Geophys. Res., 109, D15S09, doi:10.1029/2003JD004378, 2004.Google Scholar
  94. Kulmala, M., Condensation growth and evaporation in the transition regime: An analytical expression, Aerosol Sci. Technol., 19, 381–388, 1993.Google Scholar
  95. Koren, I., Y.J. Kaufman, L.A. Remer, and J.V. Martins, Measurements of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342–1345, 2004.Google Scholar
  96. Artaxo, P., J.V. Martins, M.A. Yamasoe, A.S. Procópio, T.M. Pauliquevis, M.O. Andreae, P. Guyon, L.V. Gatti, and A.M.C. Leal, Physical and chemical properties of aerosols in the wet and dry season in Rondonia, Amazonia, J. Geophys. Res., 107, 8081, doi:10.1029/2001JD000666, 2002.Google Scholar
  97. Clegg, S.L., and J.H. Seinfeld, Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types, J. Phys. Chem. A., 108, 1008–1017, 2004.Google Scholar
  98. Gallagher, M.W., E. Nemitz, J.R. Dorsey, D. Fowler, M.A. Sutton, M. Flynn, and J. Duyzer, Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition, J. Geophys. Res. Atmos., 107, 4154, doi:10.1029/2001JD000817, 2002.Google Scholar
  99. Cziczo, D.J., P.J. DeMott, S.D. Brooks, A.J. Prenni, D.S. Thomson, D. Baumgardner, J.C. Wilson, S.M. Kreidenweis, and D.M. Murphy, Observations of organic species and atmospheric ice formation-art, Geophys. Res. Lett., 31, L12116, doi:10.1029/2004GL019822, 2004b.Google Scholar
  100. Gong, S.L., L.A. Barrie, and M. Lazare, Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. 2. Global sea-salt aerosol and its budgets, J. Geophys. Res., 107, 4779, doi:10.1029/2001JD002004, 2002.Google Scholar
  101. Zhang, L., D.V. Michelangeli, and P.A. Taylor, Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation, Atmos. Environ., 38, 4653–4665, 2004c.Google Scholar
  102. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson, Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257–259, 1999.Google Scholar
  103. Liu, Y., R. Fu, and R. Dickinson, Smoke aerosols altering South American monsoon, Bull. Amer. Meteor. Soc., 86, 1062–1063, 2005b.Google Scholar
  104. Chiapello, I. et al., Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness, J. Geophys. Res., 110, D18S10, doi:10.1029/2004JD005132, 2005.Google Scholar
  105. Han, Z., H. Ueda, K. Matsuda, R. Zhang, K. Arao, Y. Kanai, and H. Hasome, Model study on particle size segregation and deposition during Asian dust events in March 2002, J. Geophys. Res. D: Atmos., 109, D19205, 19,201–19,222, 2004.Google Scholar
  106. Andreae, M.O., D. Rosenfeld, P. Artaxo, A.A. Costa, G.P. Frank, K.M. Longo, and M.A.F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 303, 1337–1342, 2004.Google Scholar
  107. Piironen, A.K., and E.W. Eloranta, Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data, J. Geophys. Res., 100, 25,569–25,576, 1995.Google Scholar
  108. Cruz, C.N., and S.N. Pandis, A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205–2214, 1997.Google Scholar
  109. Sehmel, G.A., Particle and gas dry deposition: A review, Atmos. Environ. Part A: General Topics, 14, 983–1011, 1980.Google Scholar
  110. Ruijgrok, W., C.I. Davidson, and K.W. Nicholson, Dry deposition of particles: Implications and recommendations for mapping of deposition over Europe, Tellus, 47B, 587–601, 1995.Google Scholar
  111. Ghan, S.J., R.C. Easter, E.G. Chapman, H. Abdul-Razzak, Y. Zhang, L.R. Leung, N.S. Laulainen, R.D. Saylor, and R.A. Zaveri, A physically based estimate of radiative forcing by anthropogenic sulfate aerosol, J. Geophys. Res., 106, 5279–5293, 2001.Google Scholar
  112. Lohmann, U., J. Zhang, and J. Pi, Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic – Art. No. 4341, J. Geophy. Res. Atmos., 108, 4341, 2003.Google Scholar
  113. Chate, D.M., and T.S. Pranesha, Field measurements of sub-micron aerosol concentration during cold season in India, Current Science, 86, 1610–1613, 2004.Google Scholar
  114. Greenfield, S., Rain scavenging of radioactive particulate matter from the atmosphere, J. Meteor., 14, 115–125, 1957.Google Scholar
  115. Strawbridge, K.B., and R.M. Hoff, LITE validation experiment along California's coast: Preliminary results, Geophy. Res. Lett., 23, 73–76, 1996.Google Scholar
  116. Seinfeld, J.H., G.R. Carmichael, R. Arimoto, W.C. Conant, F.J. Brechtel, T.S. Bates, T.A. Cahill, A.D. Clarke, S.J. Doherty, P.J. Flatau, B.J. Huebert, J. Kim, K.M. Markowicz, P.K. Quinn, L.M. Russell, P.B. Russell, A. Shimizu, Y. Shinozuka, Y.T.C.H. Song, I. Uno, A.M. Vogelmann, R.J. Weber, J.H. Woo, and X.Y. Zhang, ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution, Bull. Amer. Meteor. Soc., 85, 367–380, 2004a.Google Scholar
  117. Li, Q.B., D.J. Jacob, I. Bey, P.I. Palmer, B.N. Duncan, B.D. Field, R.V. Martin, A.M. Fiore, R.M. Yantosca, D.D. Parrish, P.G. Simmonds, and S.J. Oltmans, Transatlantic transport of pollution and its effects on surface ozone in Europe and North America, J. Geophys. Res., 107, 4166, doi:10.1029/2001JD001422, 2002.Google Scholar
  118. Tsai, F., T.H. Liu, S.C. Liu, T.Y. Chen, T.L. Anderson, and S.J. Masonis, Model simulation and analysis of coarse and fine particle distributions during ACE-Asia, J. Geophys. Res., 109, D19S20, doi:10.1029/2003JD003665, 2004.Google Scholar
  119. Andreae, M.O., R. Talbot, H. Berresheim, and K.M. Beecher, Precipitation chemistry of Central Amazonia, J. Geophy. Res., 95, 16,987–16,999, 1990.Google Scholar
  120. Winker, D.M., and C.R. Trepte, Laminar cirrus observed near the tropical tropopause by LITE, Geophys. Res. Lett., 25, 3351–3354, 1998.Google Scholar
  121. Gelbard, F., Y. Tambour, and J.H. Seinfeld, Sectional representations for simulating aerosol dynamics, J. Colloid Interface Sci., 76, 541–556, 1980.Google Scholar
  122. Prospero, J.M., Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, J. Geophys. Res. D: Atmos., 104, 15,917–15,927, 1999.Google Scholar
  123. Nenes, A., S.N. Pandis, and C. Pilinis, ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.Google Scholar
  124. Omar, A.H., and C.S. Gardner, Observations by the lidar In-space Technology Experiment (LITE) of high altitude clouds over the Equator in regions exhibiting extremely cold temperatures, J. Geophys. Res., 106, 1227, 2001.Google Scholar
  125. Vignati, E., J. Wilson, and P. Stier, M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models, J. Geophys. Res. Atmos., 109, 22202, doi:10.1029/2003JD004485, 2004.Google Scholar
  126. Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659–1662, 2004.Google Scholar
  127. Ravishankara, A.R., and C.A. Longfellow, Reactions on tropospheric condensed matter, Phys. Chem. Chem. Phys., 1, 5433–5441, 1999.Google Scholar
  128. Pilinis, C., and J.H. Seinfeld, Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols, Atmos. Environ., 21, 2453–2466, 1987.Google Scholar
  129. Noone, K., U. Baltensperger, A. Flossmann, S. Fuzzi, H. Hass, E. Nemitz, J.P. Putaud, H. Puxbaum, U. Schurath, K. Tørseth, and H.t. Brink, Tropospheric aerosols and clouds, in Towards Cleaner Air for Europe – Science, Tools and Application. Part 1: Results from the EUROTRAC-2 Synthesis and Integration Project, edited by P.M. Midgley, P.J.H. Builtjes, R.M.H.D. Fowler, C.N. Hewitt, N. Moussiopoulos, K. Noone, K. Thrseth and A. Volz-Thomas, Margraf Verlag, Weikersheim, 2003.Google Scholar
  130. Riemer, N., H. Vogel, and B. Vogel, Soot aging time scales in polluted regions during day and night, Atmos. Chem. Phys., 4, 1885–1893, 2004.Google Scholar
  131. Zhang, L., S.L. Gong, J. Padro, and L. Barrie, A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, 2001.Google Scholar
  132. Volken, M., and T. Schumann, A critical review of below-cloud aerosol scavenging results on Mt. Rigi, Water, Air, and Soil Pollution., 68, 15–28, 1993.Google Scholar
  133. Goodman, A., G. Underwood, and V. Grassian, A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles, J. Geophys. Res., 105, 29,053–29,064, 2000.Google Scholar
  134. Roelofs, G.J., P. Kasibhatla, L. Barrie, D. Bergmann, C. Bridgeman, M. Chin, J. Christensen, R. Easter, J. Feichter, A. Jeuken, E. Kjellstrom, D. Koch, C. Land, U. Lohmann, and P. Rasch, Analysis of regional budgets of sulfur species modeled for the COSAM exercise, Tellus, 53B, 673–694, 2001.Google Scholar
  135. Sievering, H., The dry deposition of small particles: A review of experimental measurement, Atmos. Environ., 23, 2863–2864, 1989.Google Scholar
  136. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmicheal, and T. Nakajima, An overview of ACE-Asia: Strateggies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys Res., 108, 8633, doi:1029/2003JD003550, 2003.Google Scholar
  137. Jang, M., N.M. Czoschke, S. Lee, and R.M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814–817, 2002.Google Scholar
  138. Caminade, C., L. Terray, and E. Maisonnave, West African monsoon response to greenhouse gas and sulphate aerosol forcing under two emission scenarios, Climate Dynamics., 26, 531–547, 2006.Google Scholar
  139. Kittaka, C., R.B. Pierce, J.H. Crawford, M.H. Hitchman, D.R. Johnson, G.J. Tripoli, M. Chin, A.R. Bandy, R.J. Weber, R.W. Talbot, and B.E. Anderson, A three-dimensional regional modeling study of the impact of clouds on sulfate distributions during TRACE-P – Art. No. D15S11, J. Geophys. Res. Atmos., 109, S1511, 2004.Google Scholar
  140. Sassen, K., Dusty ice clouds over Alaska, Nature, 434, 456, 2005.Google Scholar
  141. Croft, B., U. Lohmann, and K. von Salzen, Black carbon ageing in the Canadian Center for Climate modeling and analysis atmospheric general circulation model, Atmos. Chem. Phys., 5, 1931–1949, SRef-ID: 1680-7324/acp/2005-1935-1931, 2005.Google Scholar
  142. Barrie, L.A., Y.Yi, W.R. Leattch, U. Lohmann, P. Kasibhatla, G.J. Roelofs, J. Wilson, F. McGovern, C. Benkovitz, M.A. Mélières, K. Law, J. Prospero, M. Kritz, D. Bergmann, C. Bridgeman, M. Chin, J. Christensen, R. Easter, J. Feichter, C. Land, A. Jeuken, and jellström, A Comparison of Large-scale Atmospheric Sulphate Aerosol Models (COSAM): Overview and highlights, Tellus, 53B, 615–645, 2001.Google Scholar
  143. Lohmann, U., J. Feichter, C.C. Chuang, and J.E. Penner, Prediction of the number of cloud droplets in the ECHAM GCM, J. Geophys. Res., 104, 9169–9198, 1999.Google Scholar
  144. Laakso, L., T. Grönholm, U. Rannik, M. Kosmale, V. Fiedler, H. Vehkamäki, and M. Kulmala, Ultrafine particle scavenging coefficients calculated from 6 years field measurements, Atmos. Environ., 37, 3605–3613, 2003.Google Scholar
  145. Laaksonen, A., A. Hamed, J. Joutsensaari, L. Hiltunen, F. Cavalli, W. Junkermann, A. Asmi, S. Fuzzi, and M.C. Facchini, Cloud condensation nucleus production from nucleation events at a highly polluted region, Geophys. Res. Lett., 32, L06812, doi:10.1029/2004GL022092, 2005.Google Scholar
  146. Olson, T.M., and M.R. Hoffmann, Hydroxyalkylsulfonate formation: Its role as a sulphur (IV) reservoir in atmospheric water droplets, Atmos. Environ., 23, 985–997, 1989.Google Scholar
  147. Heintzenberg, J., Fine particles in the global troposphere: A review, Tellus, 41B, 149–160, 1989.Google Scholar
  148. Abdul-Razzak, H., and S.J. Ghan, A parameterization of aerosol activation. Part 3: Sectional representation, J. Geophys. Res., 107, 4026, doi:10.1029/2001JD000483, 2002.Google Scholar
  149. Whitby, E.R., and P.H. McMurry, Modal aerosol dynamics modeling, Aerosol Sci. Tech., 27, 673–688, 1997.Google Scholar
  150. Noziere, B., and D.D. Riemer, The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2, 4-pentandione, Atmos. Environ., 37, 841–851, 2003.Google Scholar
  151. Tobias, H.J., and P.J. Ziemann, Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-Tetradecene and O3 in the presence of alcohols and carboxylic acids, Environ. Sci. and Tech., 34, 2105–2115, 2000.Google Scholar
  152. Gong, S.L., X.Y. Zhang, T.L. Zhao, I.G. McKendry, D.A. Jaffe, and N.M. Lu, Characterization of Soil Dust Distributions In China And Its Transport During ACE-ASIA 2. Model Simulation and Validation, J. Geophys. Res., 108, 4262, doi:4210.1029/2002JD002633, 2003b.Google Scholar
  153. Zhai, P., X. Zhang, H. Wan, and Z. Pan, Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China, J. Climate, 18, 1096–1108, 2005.Google Scholar
  154. Schumann, T., Large discrepancies between theoretical and field-determined scavenging coefficients, J. Aerosol Sci., 20, 1159–1162, 1989.Google Scholar
  155. Malm, W.C., B.A. Schichtel, R.B. Ames, and K.A. Gebhart, A 10-year spatial and temporal trend of sulfate across the United States – Art. No. 4627, J. Geophy. Res. Atmos., 107, 4627, 2002.Google Scholar
  156. Zufall, M.J., and C.I. Davidson, Dry deposition of particles, Atmospheric Particles, 425–473, 1998.Google Scholar
  157. Chand, D., O. Schmid, P. Gwaze, R. Parmar, G. Helas, K. Zeromskiene, A. Wiedensohler, A. Massling, and M. Andreae, Laboratory measurements of smoke optical properties from the burning of Indonesian peat and other types of biomass, Geophys. Res. Lett., 32, Art. No. L12819, 2005.Google Scholar
  158. DEH, State of the Air: National Ambient Air Quality Status and Trends Report 1991–2001. Department of Environment and Heritage, Australian Government, ISBN:0-642-54990-7, April, 2004Google Scholar
  159. Ferrare, R.A., E.V. Browell, J.W. Hair, S. Ismail, D.D. Turner, M. Clayton, C.F. Butler, V.G. Brackett, M.A. Fenn, A. Notari, S.A. Kooi, M. Chin, S. Guibert, M. Schulz, C. Chuang, M. Krol, S.E. Bauer, X. Liu, G. Myhre, Ø. Seland, D. Fillmore, S. Ghan, S. Gong, P. Ginoux, and T. Takemura, The Vertical Distribution of Aerosols: Lidar Measurements vs. Model Simulations, paper presented at 23rd International Laser Radar Conference, 24–28 July 2006, Nara, Japan, 2006.Google Scholar
  160. GAW, Proceedings of WMO/GAW Aerosol measurement procedures guidelines and recommendations, GAW Report #153, available at, 2003.
  161. GAW, Proceedings of WMO/GAW experts workshop on a global surface-based network for long term observations of column aerosol optical properties, Davos, Switzerland, 8–10 March 2004 GAW Report #162 available at, 2004
  162. Hoff, R.M., A. Vandermeer, and L. Spacek, LITE/NARCM retrievals and implications for future missions, in Advances in Laser Remote Sensing, edited by A. Dabas, C. Loth and J. Pelon, pp. 27–30, Editions de L'Ecole polytechnique, 91128 Palaiseux Cedex, France, 2001.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sunling Gong
    • 1
  • Leonard A. Barrie
    • 2
  1. 1.Environment CanadaTorontoCanada
  2. 2.WMOGenevaSwitzerland

Personalised recommendations