Bio-Ethanol Production in Brazil

  • Robert M. Boddey
  • Luis Henrique de B. Soares
  • Bruno J.R. Alves
  • Segundo Urquiaga


In this chapter the history and origin of the Brazilian program for bioethanol production (ProÁlcool) from sugarcane (Saccharum sp.) are described. Sugarcane today covers approximately 7 Mha, with 357 operating cane mills/ distilleries. The mean cane yield is 76.6 Mg ha-1 and almost half of the national production is dedicated to ethanol production, the remainder to sugar and other comestibles. The mean ethanol yield is 6280 L ha-1. An evaluation of the environmental impact of this program is reported, with especial emphasis on a detailed and transparent assessment of the energy balance and greenhouse gas (CO2, N2O, CH4) emissions. It was estimated that the energy balance (the ratio of total energy in the biofuel to fossil energy invested in its manufacture) was approximately 9.0, and the use of ethanol to fuel the average Brazilian car powered by a FlexFuel motor would incur an economy of 73% in greenhouse gas emissions per km travelled compared to the Brazilian gasohol. Other aspects of the environmental impact are not so positive. Air pollution due to pre-harvest burning of cane can have serious effects on children and elderly people when conditions are especially dry. However, cane burning is gradually being phased out with the introduction of mechanised green-cane harvesting. Water pollution was a serious problem early in the program but the return of distillery waste (vinasse) and other effluents to the field have now virtually eliminated this problem. Soil erosion can be severe on sloping land on susceptible soils but with the introduction of no-till techniques and green-cane harvesting the situation is slowly improving. The distribution of the sugar cane industry shows that reserves of biodiversity such as Amazônia are not threatened by the expansion of the program and while there may be no great advantages of the program for rural poor, the idea that it will create food shortages is belied by the huge area of Brazil compared to the area of cane planted. Working conditions for the cane cutters are severe, almost inhuman, but there is no shortage of men (and women) to perform this task as wages and employment benefits are considerably more favourable than for the majority of rural workers. The future will bring expansion of the industry with increased efficiency, more mechanisation of the harvest, lower environmental impact along with a reduction in the number of unskilled workers employed and an increase in wages for the more skilled. This biofuel program will not only be of considerable economic and environmental benefit to Brazil, but also will play a small but significant global role in the mitigation of greenhouse gas emissions from motor vehicles to the atmosphere of this planet.


Bio-ethanol Brazil energy balance environmental impact flex-fuel vehicles greenhouse gas emissions labour conditions sugarcane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANFAVEA (2007). Associação Nacional dos Fabricantes de Veículos Automotores – Brasil. Retrieved 24, August, 2007 Scholar
  2. Anon (2005). O maior aliado do setor sucroalcooleiro. Revista Farm Forum, 4(15), 4–6. (CNH Latin-America Ltda. Av. Juscelino K. de Oliveira, 11.825, Curitiba, 81450-903, Paraná.)Google Scholar
  3. Azeredo, D. F., Bolsanelli, J., Weber, M., & Vieira, J. R. (1986). Nitrogênio em cana-planta, doses e fracionamento. Revista da Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil (STAB), 4, 26–32.Google Scholar
  4. Arbex, M. A, Martins, L. C., de Oliveira, R. C., Pereira, L. A. A., Arbex, F. F., Cançado, J. E. D., Saldiva, P. H. N., & Braga, A. L. F. (2007). Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. Journal of Epidemiology and Community Health, 61, 395–400.CrossRefGoogle Scholar
  5. Bacchi, O. O. S., Reichard, K., Sparovek, G., & Ranieri, S. B. L. (2000). Soil erosion evaluation in a small watershed in Brazil through 137Cs fallout redistribution analysis and conventional models. Acta Geologica Hispanica, 35(3–4), 251–259.Google Scholar
  6. Baldani, J. I., Caruso, L., Baldani, V. L. D., Goi, S. R., & Döbereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29, 911–922.CrossRefGoogle Scholar
  7. Baldani, J. I., Reis, V. M., Baldani, V. L. D., & Döbereiner, J. (2002). A brief story of nitrogen fixation in sugarcane reasons for success in Brazil. Functional Plant Biology, 29, 417–423.CrossRefGoogle Scholar
  8. Balsadi, O. V. (2007). Mercado de trabalho assalariado na cultura da cana-de-açúcar no Brasil no período 1992–2004. Informações Econômicas, 37, 38–54.Google Scholar
  9. Biggs, I. M., Stewart, G. R., Wilson, J. R., & Critchley, C. (2002). 15N natural abundance studies in Australian commercial sugarcane. Plant and Soil, 238(1), 21–30.CrossRefGoogle Scholar
  10. Boddey, R. M. (1993). Green energy from sugar cane. Chemistry & Industry, 19 May 1993 pp. 355–358.Google Scholar
  11. Boddey, R. M., Macedo, R., Tarré, R. M., Ferreira, E., Oliveira, O. C., Rezende, C. P., Cantarutti, R. B., Pereira, J. M., Alves, B. J. R., & Urquiaga, S. (2004). Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agriculture, Ecosystems and Environment, 103, 389–403.CrossRefGoogle Scholar
  12. Boddey, R. M., Jantalia, C. P., Macedo, M. O., de Oliveira, O. C., Resende, A. S., Alves, B. J. R., & Urquiaga, S. (2006). Potential of carbon sequestration in soils of the Atlantic Forest region of Brazil. In R. Lal, C. C. Cerri, M. Bernoux, J. Etchevers & C. E. P. Cerri (Eds.), Carbon Sequestration in Soils of Latin America. (pp. 305–347). New York: Howarth Press.Google Scholar
  13. Boddey, R. M. (1995). Biological nitrogen fixation in sugar cane: A key to energetically viable bio-fuel production. CRC Critical Reviews in Plant Sciences, 14, 263–279.CrossRefGoogle Scholar
  14. Boddey, R. M., Polidoro, J. C., Resende, A. S., Alves, B. J. R., & Urquiaga, S. (2001). Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Australian Journal of Plant Physiology, 28(9), 889–895.Google Scholar
  15. Boddey, R. M., Urquiaga, S., Alves, B. J. R., & Reis, V.M. (2003). Endophytic nitrogen fixation in sugar cane: Present knowledge and future applications. Plant and Soil, 252, 139–149.CrossRefGoogle Scholar
  16. Botelho, P. S. M., (1992). Quinze anos de controle biológico de Diatraea saccharalis utilizando parasitóides. Pesquisa Agropecuária Brasileira, 27, 255–262.Google Scholar
  17. Campos, D. C. (2004). Potencialidade do sistema de colheita sem queima da cana-de-açúcar para o seqüestro de carbono. PhD Thesis, Escola Superior de Agricultura, Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, SP, Brazil. (in Portuguese).Google Scholar
  18. Cançado, J. E. D., Saldiva, P. H. N., Pereira, L. A. A., Lara, L. B. L. S., Artaxo, P., Martinelli, L. A., Arbex, M. A., Zanobetti, A., & Braga, A. L. F. (2006). The impact of sugar cane-burning emissions on the respiratory system of children and the eldery. Environmental Health Perspectives, 114, 725–729.CrossRefGoogle Scholar
  19. Cerri, C. C., Bernoux, M., Cerri, C. E. P., & Feller, C. (2004). Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and Management, 20, 248–254.CrossRefGoogle Scholar
  20. Coelho, S. T. (2005). A cana e a questão ambiental: Aspectos socio-ambientais da nova modalidade de energia. (Seminar presented at the National Development Bank (BNDES), Rio de Janeiro, Nov. 25, 2005).Google Scholar
  21. Correchel, V. (2003). Avaliação de índices de erodibilidade do solo através da técnica da análise da redistribuição do “FALLOUT” do 137Cs. DSc. Thesis, Universidade de São Paulo,Piracicaba, SP.Google Scholar
  22. de Oliveira, M. E. D., Vaughan, B. E., & Rykiel, Jr. E. J. (2005). Ethanol as fuel: Energy, carbon dioxide balances and ecological footprint. BioScience, 55, 593–602.CrossRefGoogle Scholar
  23. de Souza, Z. M., Martins Filho, V. M., Marques Júnior, J., & Pereira, G. T. (2005). Variabilidade espacial de fatores de erosão em LATOSSOLO VERMELHO Eutroférrico sob cultivo de cana-de-açúcar. Engenharia Agrícola (Jaboticabal, SP) 25, 105–114.Google Scholar
  24. Farla, J. C. M. & Blok, K. (2001). The quality of energy intensity indicators for international comparison in the iron and steel industry. Energy Policy, 29, 523–543.CrossRefGoogle Scholar
  25. Giampietro, M. & Pimentel, D. (1990). Assessment of the energetics of human labor. Agriculture, Ecosystems and Environment, 32, 257–272.CrossRefGoogle Scholar
  26. Globo Rural (2007). Television Program Rede Globo, 26, August, 2007. Full text retreived 27, August, 2007,27062,LTO0-4370-298116-1,00.htmlGoogle Scholar
  27. Godoi, R. H. M., Godoi, A. F. L., Worobiec, A., Andrade, S. J., de Hoog, J., Santiago-Silva, M. R., & Van Grieken, R. (2004). Characterisation of Sugar Cane Combustion Particles in the Araraquara Region, Southeast Brazil, Microchimica Acta, 145, 53–56.CrossRefGoogle Scholar
  28. Hannon, B., Stein, R. G., Segal, B. Z., & Serber, D. (1978). Energy and labor in the contruction sector. Science, 202, 837–847.CrossRefGoogle Scholar
  29. Hoefsloot, G., Termorshuizen, A. J., Watt, D. A., & Cramer, M. D. (2005). Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant and Soil, 277, 85–96.CrossRefGoogle Scholar
  30. IBGE (2004). Instituto Brasileiro de Geografia e Estatística, Pesquisa Nacional por Amostra de Domicílios. Rio de Janeiro, 24, 2004. 27pp.Google Scholar
  31. IBGE (2007). Instituto Brasileiro de Geografia e Estatística. Retrieved June 5, 2007, from 1&u6=1&u7=1&u8=1&u9=3&u10=1&u11=26674&u12=1&u13=1&u14=1Google Scholar
  32. IEA (1999). International Energy Agency. The reduction of Greenhouse Gas Emissions from the Cement Industry. Report No PH3/7, May, 1999, Paris.Google Scholar
  33. IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Retrieved July, 2006, Scholar
  34. ISO 14040 (2005). ISO/DIS 14040 – Environmental management – Life cycle assessment – Principles and framework.Google Scholar
  35. James, E. K. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65, 197–209.CrossRefGoogle Scholar
  36. Kongshaug, G. (1998). Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production. IFA Technical Conference, Marrakech, Morocco, 28 September-1 October, 1998, 18pp.Google Scholar
  37. Kovarik, W. (2005). Ethyl-leaded Gasoline: How a classic occupational disease became an international public health disaster. International Journal of Occupational and Environmental Health, 11, 384–397.Google Scholar
  38. Lægreid, M., Bøckman, O. C., & Kaarstad, O. (1999). Agriculture, fertilizers and the environment. (Wallingford: CABI).Google Scholar
  39. Li, R. P. & Macrae, I. C. (1992). Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biology and Biochemistry, 24(5), 413–419.CrossRefGoogle Scholar
  40. Lima, E., Boddey, R. M., & Dobereiner, J. (1987). Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biology and Biochemistry, 19(2), 165–170.CrossRefGoogle Scholar
  41. Lombardi-Neto, F., Dechen, S. C. F., Castro, O. M. (1982). A cultura da cana-de-açúcar e as perdas de solo e água por erosão. (Paper presented at Congresso Brasileiro Conservação Solo, 4, Campinas, SP. Programa e Resumos. Campinas: Soc. Bras. Ciência Solo, Secretaria Agricultura do Estado de São Paulo e Ministério da Agricultura, 24 p.).Google Scholar
  42. Macedo, I. C., Leal, M. R. L.V., & da Silva, J. E. A. R. (2003). Greenhouse gas (GHG) emissions in the production and use of ethanol in Brazil: Present situation (2002). Government of the State of Sao Paulo, Secretariat of the Environment, 47pp.Google Scholar
  43. Macedo, I. C. (1997). Balanço de Energia na produção de cana-de-açúcar e álcool nas usinas cooperadas: 1996. Boletim CTC Coopersucar, 23pp.Google Scholar
  44. Macedo, I. C. (1998). Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass and Bioenergy, 14(1), 77–81.CrossRefGoogle Scholar
  45. Machado, G. R., da Silva, W. M. & Irvine, J. E. (1987). Sugar cane breeding in Brazil: the Copersucar Program. In Copersucar International Sugarcane Breeding Workshop, Cooperativa de Produtores de Cana, Açúcar e Álcool do Estado de São Paulo Ltda, São Paulo, SP, Brazil. pp. 215–232.Google Scholar
  46. MAPA (2007). Balanço Nacional da Cana de Açúcar e Agroenergia. Ministério da Agricultura, Pecuária e Abastecimento, Brasília, DF.Google Scholar
  47. Mello, F. F. C., Cerri, C. E. P., Bernoux, M., Volkoff, B., & Cerri, C. C. (2006). Potential of soil carbon sequestration for the Brazilian Atlantic region. In R. Lal, C. C. Cerri, M. Bernoux, J. Etchevers, & C. E. P. Cerri (Eds.), Carbon Sequestration in Soils of Latin America. (pp. 349–368). New York: Haworth Press.Google Scholar
  48. Muñoz-Rojas, J. & Caballero-Mellado, J. (2003). Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microbial Ecology, 46, 454–464.CrossRefGoogle Scholar
  49. Muthukumarasamy, R., Revathi, G., & Lakshminarasimhan, C. (1999). Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biology and Fertility of Soils, 29, 157–164.CrossRefGoogle Scholar
  50. Muthukumarasamy, R., Revathi, G., & Loganathan, P. (2002). Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn Gluconacetobacter diazotrophicus). Plant and Soil, 243, 91–102.CrossRefGoogle Scholar
  51. Pimentel, D. & Patzek, T. (2007). Ethanol production: Energy and economic issues related to U.S. and Brazilian sugarcane (in press).Google Scholar
  52. Pimentel, D. (Ed.) (1980). CRC Handbook of energy utilization in agriculture. (Boca Raton: CRC Press).Google Scholar
  53. Resende, A. S., Xavier, R. P., Oliveira, O. C., Urquiaga, S., Alves, B. J. R., & Boddey, R. M. (2006). Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant and Soil, 281, 339–351.CrossRefGoogle Scholar
  54. Ritchie, J. C. & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality, 19, 215–233.CrossRefGoogle Scholar
  55. Ritchie, J. C. & McHenry, J. R. (1995). ^137 Cs use in erosion and sediment deposition studies: promises and problems. Vienna: International Atomic Energy Agency. TECDOC 828.Google Scholar
  56. Sano, E. E., Barcellos, A. O., & Bezerra, H. S. (2000). Assessing the spatial distribution of cultivated pastures in the Brazilian Savanna. Pasturas Tropicales, 22, 2–15.Google Scholar
  57. Sene Pinto, A. de, (2007). Centro Universitário Moura Lacerda, - Ribeirão Preto, São Paulo 14076-510. Personal communication.Google Scholar
  58. Shapouri, H., Duffield, J. A., & Wang, M. The Energy Balance of Corn Ethanol: An Update. (2002). U.S. Department of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses. Agricultural Economic Report No. 814.Google Scholar
  59. Sheehan, J., Camobreco, V., Duffield, D., Graboski, M., & Shapouri, H. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus. (1998). U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy.Google Scholar
  60. SINDAG (2007). Sindicato Nacional da Indústria de Produtos para Defesa Agrícola. Retrieved June 27, from Scholar
  61. Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32, 2099–2103.CrossRefGoogle Scholar
  62. Smil, V. (2001). Enriching the Earth. (Cambridge: MIT Press).Google Scholar
  63. Sparovek, G. & Schnug, E. (2001). Soil tillage and precision agriculture. A theoretical case study for soil erosion control in Brazilian sugar cane production. Soil & Tillage Research, 61, 47–54.CrossRefGoogle Scholar
  64. TCU (1990). Proálcool, Programa Nacional do Álcool. Relatório de Auditoria Operacional. Tribunal de Contas da União. Brasilia, DF. 116pp.Google Scholar
  65. UOL Economia (2007). Retrieved June 27, from Scholar
  66. Urquiaga, S., Cruz, K. H. S., & Boddey, R. M. (1992). Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal, 56(1), 105–114.Google Scholar
  67. Worrell, E., Price, L., Martin, N., Farla, J. C. M., & Schaeffer, R. (1997). Energy intensity in the iron and steel industry: a comparison of physical and economic indicators. Energy Policy, 25(7–9), 727–744.CrossRefGoogle Scholar
  68. Worrell, E. & Galitsky, C. (2004). Energy Efficiency Improvement Opportunities for Cement Making. An ENERGY STAR® Guide for Energy and Plant Managers. LBNL-54036. U.S. Environmental Protection Agency. Retrieved July, 2007, from iespubs/ieuapubs.htmlGoogle Scholar
  69. Young, S. B., Turnbull, S., & Russell, A. (2002). Towards a Sustainable Cement Industry. Substudy 6: What LCA can tell us about the cement industry. Battelle/World Business Council for Sustainable Development. Retrieved July, 2007, from www.wbcsdcement.orgGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robert M. Boddey
    • 1
  • Luis Henrique de B. Soares
    • 1
  • Bruno J.R. Alves
    • 1
  • Segundo Urquiaga
    • 1
  1. 1.Embrapa-AgrobiologiaSeropédica, 23890-000Brazil

Personalised recommendations