Nonequilibrium Phase Transition in Scattered Cell Communities Coupled by Auto/Paracrine-Like Signalling

  • H. Berry


Auto/paracrine cell-to-cell communications via diffusive messengers can be coupled to a positive feedback loop in which cell stimulation by a messenger results in the production of new messengers. This yields a potential mechanism for relay transmission of the emitted message. This paper investigates the influence of noise on this mutual coupling of the cells with their environment, using numerical simulations of a stochastic minimal model. The results demonstrate that the deterministic (mean-field) approximation of this stochastic process fails short of predicting its behaviour because of the presence of strong noise-induced fluctuations. Instead, the behaviour of the model can be explained by the occurrence of a nonequilibrium phase transition, which is found to be in the universality class of directed percolation. This provides a theoretical framework to understand signal transmission in these stochastic systems.


Signal transmission autocrine relay stochastic models critical phenomena directed percolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam M., & Lairez, D., 1996, Sol-gel transition. In Physical Properties of Polymeric Gels (J.P. Cohen Addad, ed.), John Wiley &. Sons, UK, pp.87–142.Google Scholar
  2. Albano, E.V., 1994, Critical behaviour of a forest fire model with immune trees, J. Phys. A 277:L881–L886.CrossRefGoogle Scholar
  3. Bär, M., Falcke, M., Levine, H., & Tsimring, L.S., 2000, Discrete stochastic modeling of calcium channel dynamics, Phys. Rev. Lett. 84:5664–5667.PubMedCrossRefGoogle Scholar
  4. Batsilas, L., Berezhkovskii, A.M., & Shvartsman, S.Y., 2003, Stochastic model of autocrine and paracrine signals in cell culture assays, Biophys. J. 85:3659–3665.PubMedGoogle Scholar
  5. Berry, H., 2003, Nonequilibrium phase transition in a self-activated biological network, Phys. Rev. E 67:031907.CrossRefGoogle Scholar
  6. Bhalla, U.S., 2004, Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways, Biophys. J. 87:733–744.PubMedCrossRefGoogle Scholar
  7. Binder, K., & Heermann, D.W., 1997, Monte Carlo Simulation in Statistical Physics, Springer, Berlin, Germany.Google Scholar
  8. Dammer, S.M., & Hinrichsen, H., 2003, Epidemic spreading with immunization and mutations, Phys. Rev. E 68:016114.CrossRefGoogle Scholar
  9. De Kievit, T.R., & Iglewski, B.H., 2000, Bacterial quorum sensing in pathogenic relationships, Infect. Imun. 68:4839–4849.CrossRefGoogle Scholar
  10. Dent, P., Reardon, D.B., Park, J.S., Bowers, G., Logsdon, C., Valerie, K., Schmidt-Ullrich, R., 1999, Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death, Mol. Biol. Cell 10:2493–2506.PubMedGoogle Scholar
  11. Ferreira, C.P., & Fontanari, J.F., 2002, Nonequilibrium phase transition in a model for the origin of life, Phys. Rev. E 65:021902.CrossRefGoogle Scholar
  12. Freeman, M., 2000, Feedback control of intercellular signalling in development, Nature 408:313–319.PubMedCrossRefGoogle Scholar
  13. Gloster, J., Freshwater, A., Sellers, R.F., & Alexandersen, S., 2005, Re-assessing the likelihood of airborne spread of foot-and-mouth disease at the start of the 1967–1968 UK foot-and-mouth disease epidemic, Epidemiol. Infect. 133:767–783.PubMedCrossRefGoogle Scholar
  14. Grassberger, P., 1982, On phase transitions in Schlögl’s second model, Z. Phys. B 47:365–374.CrossRefGoogle Scholar
  15. Hammond, G.W., Raddatz, R.L., & Gelskey, D.E., 1989, Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza, Rev. Infect. Dis. 11:494–497.PubMedGoogle Scholar
  16. Hinrichsen, H., 2006, Non-equilibrium phase transitions, Physica A 369:1–28.CrossRefGoogle Scholar
  17. Hinrichsen, H., 2000a, Nonequilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys. 49:815–958.CrossRefGoogle Scholar
  18. Hinrichsen, H., 2000b, On possible experimental realizations of directed percolation, Braz. J. Phys. 30:69–82.CrossRefGoogle Scholar
  19. James, S., Nilsson, P., James, G., Kjelleberg, S., & Fagerström, T., 2000, Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation, J. Mol. Biol. 296:1127–1137.PubMedCrossRefGoogle Scholar
  20. Lipowski, A., & Liposwka, D., 2000, Nonequilibrium phase transition in a lattice prey-predator system, Physica A 276:456–464.CrossRefGoogle Scholar
  21. Lübeck, S., & Heger, P.C., 2003, Universal finite-size scaling behavior and universal dynamical scaling behavior of absorbing phase transitions with a conserved field, Phys. Rev. E 68:056102.CrossRefGoogle Scholar
  22. Nikolic, D., Boettiger, A., Bar-Sagi, D., Carbeck, J., & Shvartsman, S., 2006, Role of boundary conditions in an experimental model of epithelial wound healing, Am. J. Physiol. Cell Physiol. 291:C68–C75.PubMedCrossRefGoogle Scholar
  23. Odor, G., 2004, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76:663–724.CrossRefGoogle Scholar
  24. Ortega, N.R.S., Pinheiro, F.S., Tomé, T., & Drugowich de Felicio, J.R., 1998, Critical behavior of a probabilistic cellular automaton describing a biological system, Physica A 255:189–200.CrossRefGoogle Scholar
  25. Pribyl, M., Muratov, C.B., & Shvartsman, S.Y., 2003a, Long-range signal transmission in autocrine relays, Biophys. J. 84:883–896.Google Scholar
  26. Pribyl, M., Muratov, C.B., & Shvartsman, S.Y., 2003b, Discrete models of autocrine cell communication in epithelial layers, Biophys. J. 84:3624–3635.Google Scholar
  27. Rao, C.V., Wolf, D.M., & Arkin, A.P., 2002, Control, exploitation and tolerance of intracellular noise, Nature 420:231–237.PubMedCrossRefGoogle Scholar
  28. Raser, J.M., & O’Shea, E.K., 2005, Noise in gene expression: origins, consequences, and control, Science 309:2010–2013.PubMedCrossRefGoogle Scholar
  29. Sahimi, M., 1994, Applications of Percolation Theory, Taylor & Francis, UK.Google Scholar
  30. Samoilov, M.S., Price, G., & Arkin, A.P., 2006, From fluctuations to phenotypes: the physiology of noise, Sci. STKE 366:re17.CrossRefGoogle Scholar
  31. Shvartsman, S.Y., Wiley, H.S., Deen, W.M., & Lauffenburger, D.A., 2001, Spatial range of autocrine signalling: modelling and computational analysis, Biophys. J. 81:1854–1867.PubMedCrossRefGoogle Scholar
  32. Suel, G.M., Garcia-Ojalvo J., Liberman, L.M., Elowitz, M.B., Tian, T., & Burrage, K., 2006, An excitable gene regulatory circuit induces transient cellular differentiation, Nature 440:545–550.PubMedCrossRefGoogle Scholar
  33. Szabo, G., Gergely, H., & Oborny, B., 2002, Generalized contact process on random environments, Phys. Rev. E 65:066111.CrossRefGoogle Scholar
  34. Tian, T., & Burrage, K., 2006, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci. USA 103:8372–8377.Google Scholar
  35. Timofeeva, Y., & Coombes, S., 2004, Directed percolation in a two-dimensional stochastic fire-diffuse-fire model, Phys. Rev. E 70:062901.CrossRefGoogle Scholar
  36. Vilar, J.M., Guet, C.C., & Leibler, S., 2003, Modeling network dynamics: the lac operon, a case study, J. Cell Biol. 161:471–476.PubMedCrossRefGoogle Scholar
  37. Wiley, H.S., Shvartsman, S.Y., & Lauffenburger, D., 2003, Computational modeling of the EGF-receptor systems: a paradigm for systems biology, Trends Cell Biol. 13:43–50.PubMedCrossRefGoogle Scholar
  38. Zhong, D., & ben-Avraham, D., 1995, University class of two-offspring branching-annihilating random walks, Phys. Lett. A 209:333–337.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Berry
    • 1
  1. 1.INRIA Team Alchemy Parc Club Orsay Université91893 Orsay CedexFrance

Personalised recommendations