Skip to main content

Propagation of Volume Phase Transitions as a Possible Mechanism for Movement in Biological Systems

  • Chapter
Phase Transitions in Cell Biology

Abstract

Scientists frequently use technical terms to describe biological systems and functions. By virtue of technical analogy, these terms provide us with insight into the mechanisms that drive biological systems, and often guide us in exploration of little understood phenomena. In this article, we go from a well understood engineered system to less understood biological ones. We apply ourknowledge of polymer gel based devices, to motility principles of two microorganisms: Vorticellid ciliates and non-flagellated cyanobacterium Synechococcus. We propose that contraction of Vorticellid and swimming of Synechococcus are based on the same mechanism that drives the movement of polymer gels, namely the propagating volume phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaka, M., K. Motokawa, S. Sasaki, T. Nakahira, H. Kawasaki, H. Maeda, and Y. Tominaga. 2000. Salt-induced volume phase transition of poly (N-isopropylacrylamide) gel. J. Chem. Phys. 113:5980.

    Article  CAS  Google Scholar 

  • Brahamsha, B. 1996. An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proceedings of the National Academy of Sciences of the United States of America 93:6504–6509.

    Google Scholar 

  • Ehlers, K. M., A. D. T. Samuel, H. C. Berg, and R. Montgomery. 1996. Do cyanobacteria swim using traveling surface waves? Proceedings of the National Academy of Sciences of the United States of America 93:8340–8343.

    Google Scholar 

  • Hirotsu, S., Y. Hirokawa, and T. Tanaka. 1987. Volume-phase transitions of ionized N-isopropylacrylamide gels. Journal of Chemical Physics 87:1392–1395.

    Article  CAS  Google Scholar 

  • Knoblauch, M., and W. S. Peters. 2004. Biomimetic actuators: where technology and cell biology merge. Cellular and Molecular Life Sciences 61:2497–2509.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L. 1990. The Sacculus Contraction Expansion Model for Gliding Motility. Journal of Theoretical Biology 142:95–112.

    Article  Google Scholar 

  • Mahadevan, L., and P. Matsudaira. 2000. Motility powered by supramolecular springs and ratchets. Science 288:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, E. S., and T. Tanaka. 1988. Kinetics of discontinuous volume-phase transitions of gels. Journal of Chemical Physics 89:1695–1703.

    Article  CAS  Google Scholar 

  • McCarren, J., J. Heuser, R. Roth, N. Yamada, M. Martone, and B. Brahamsha. 2005. Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. Journal of Bacteriology 187:224–230.

    Article  PubMed  CAS  Google Scholar 

  • Miloh, T., and A. Galper. 1993. Self-Propulsion of General Deformable Shapes in a Perfect Fluid. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 442:273–299.

    Google Scholar 

  • Mogilner, A., and G. Oster. 1996. Cell motility driven by actin polymerization. Biophysical Journal 71:3030–3045.

    PubMed  CAS  Google Scholar 

  • Moriyama, Y., S. Hiyama, and H. Asai. 1998. High-speed video cinematographic demonstration of stalk and zooid contraction of Vorticella convallaria. Biophysical Journal 74:487–491.

    PubMed  CAS  Google Scholar 

  • Moriyama, Y., H. Okamoto, and H. Asai. 1999. Rubber-like elasticity and volume changes in the isolated spasmoneme of giant Zoothamnium sp. under Ca2+-induced contraction. Biophysical Journal 76:993–1000.

    Article  PubMed  CAS  Google Scholar 

  • Pitta, T. P., and H. C. Berg. 1995. Self-Electrophoresis Is Not the Mechanism for Motility in Swimming Cyanobacteria. Journal of Bacteriology 177:5701–5703.

    PubMed  CAS  Google Scholar 

  • Pitta, T. P., E. E. Sherwood, A. M. Kobel, and H. C. Berg. 1997. Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113. Journal of Bacteriology 179:2524–2528.

    PubMed  CAS  Google Scholar 

  • Samuel, A. D. T., J. D. Petersen, and T. S. Reese. 2001. Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming syanobacterium. BMC Microbiology 1.

    Google Scholar 

  • Stone, H. A., and A. D. T. Samuel. 1996. Propulsion of microorganisms by surface distortions. Physical Review Letters 77:4102–4104.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T. 1981. Gels Scientific American 244:124–137.

    CAS  Google Scholar 

  • Tanaka, T., D. Fillmore, S.-T. Sun, I. Nishio, G. Swislow, and A. Shah. 1980. Phase transtions in ionic gels. Physical Review Letters 45:1636–1639.

    Article  CAS  Google Scholar 

  • van der Linden, H. J., S. Herber, W. Olthuis, and P. Bergveld. 2003. Stimulus-sensitive hydrogels and their applications in chemical (micro) analysis. Analyst 128:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Waterbury, J. B., J. M. Willey, D. G. Franks, F. W. Valois, and S. W. Watson. 1985. A Cyanobacterium Capable of Swimming Motility. Science 230:74–76.

    Article  PubMed  Google Scholar 

  • Willey, J. M., J. B. Waterbury, and E. P. Greenberg. 1987. Sodium-Coupled Motility in a Swimming Cyanobacterium. Journal of Bacteriology 169:3429–3434.

    PubMed  CAS  Google Scholar 

  • Wolgemuth, C. W., O. Igoshin, and G. Oster. 2003. The motility of mollicutes. Biophysical Journal 85:828–842.

    PubMed  CAS  Google Scholar 

  • Yamauchi. 2001. Gels: introduction. In Gels handbook, Y. Osada (Ed.). Academic Press.

    Google Scholar 

  • Yeghiazarian, L. L., S. Mahajan, C. D. Montemagno, C. Cohen, and U. Wiesner. 2005. Directed motion and cargo transport through propagation of polymer-gel volume phase transitions. Advanced Materials 17:1869–1873.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yeghiazarian, L., Lux, R. (2008). Propagation of Volume Phase Transitions as a Possible Mechanism for Movement in Biological Systems. In: Pollack, G.H., Chin, WC. (eds) Phase Transitions in Cell Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8651-9_11

Download citation

Publish with us

Policies and ethics