Advertisement

Selfish Evolution

  • Matteo Conti

Keywords

Stem Cell Cancer Stem Cell Mantle Cell Lymphoma Nuclear Reprogram Malignant Cancer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Readings

  1. Beausejour, C.M. and J. Campisi, Ageing: balancing regeneration and cancer. Nature, 2006. 443(7110): 404–5.PubMedCrossRefGoogle Scholar
  2. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 2005. 6(8): 611–22.PubMedCrossRefGoogle Scholar
  3. Cairns, J., Mutation selection and the natural history of cancer. Nature, 1975. 255(5505): 197–200.PubMedCrossRefGoogle Scholar
  4. Campisi, J., Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 2005. 120(4): 513–22.PubMedCrossRefGoogle Scholar
  5. Campisi, J. and F. d’Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): 729–40.PubMedCrossRefGoogle Scholar
  6. Crespi, B. and K. Summers, Evolutionary biology of cancer. Trends Ecol Evol, 2005. 20(10): 545–52.PubMedCrossRefGoogle Scholar
  7. Dawkins, R., The selfish gene. 1989: Oxford University Press. 366.Google Scholar
  8. DePinho, R.A., The age of cancer. Nature, 2000. 408(6809): 248–54.PubMedCrossRefGoogle Scholar
  9. Feldser, D.M. and C.W. Greider, Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 2007. 11(5): 461–9.PubMedCrossRefGoogle Scholar
  10. Gatenby, R.A., Commentary: carcinogenesis as Darwinian evolution? Do the math! Int J Epidemiol, 2006. 35(5): 1165–7.CrossRefGoogle Scholar
  11. Greaves, M., Darwinian medicine: a case for cancer. Nat Rev Cancer, 2007. 7(3): 213–21.PubMedCrossRefGoogle Scholar
  12. Greenman, C., et al., Patterns of somatic mutation in human cancer genomes. Nature, 2007. 446(7132): 153–8.PubMedCrossRefGoogle Scholar
  13. Hartwell, L., Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell, 1992. 71(4): 543–6.PubMedCrossRefGoogle Scholar
  14. Khong, H.T. and N.P. Restifo, Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol, 2002. 3(11): 999–1005.PubMedCrossRefGoogle Scholar
  15. Kinzler, K.V., B The Genetic Basis of Human Cancer. 1998, New York: McGraw-Hill.Google Scholar
  16. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. Nature, 1998. 396(6712): 643–9.PubMedCrossRefGoogle Scholar
  17. Murgia, C., et al., Clonal origin and evolution of a transmissible cancer. Cell, 2006. 126(3): 477–87.PubMedCrossRefGoogle Scholar
  18. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): 23–8.PubMedCrossRefGoogle Scholar
  19. Pathak, S., et al., Telomere dynamics, aneuploidy, stem cells, and cancer (review). Int J Oncol, 2002. 20(3): 637–41.PubMedGoogle Scholar
  20. Ponder, B.A., Cancer genetics. Nature, 2001. 411(6835): 336–41.PubMedCrossRefGoogle Scholar
  21. Vogelstein, B., et al., Genetic alterations during colorectal-tumor development. N Engl J Med, 1988. 319(9): 525–32.PubMedGoogle Scholar
  22. Vogelstein, B.K., Kenneth W., Genetic Basis of Human Cancer, The. 2002, New York: McGraw-Hill.Google Scholar
  23. Wang, E., M.C. Panelli, and F.M. Marincola, Gene profiling of immune responses against tumors. Curr Opin Immunol, 2005. 17(4): 423–7.PubMedCrossRefGoogle Scholar
  24. Armstrong, L., et al., Epigenetic Modification Is Central to Genome Reprogramming in Somatic Cell Nuclear Transfer. Stem Cells, 2006. 24(4): 805–814.PubMedCrossRefGoogle Scholar
  25. Brabletz, T., et al., Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): 744–9.PubMedCrossRefGoogle Scholar
  26. Calin, G.A., et al., Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 2007. 12(3): 215–29.PubMedCrossRefGoogle Scholar
  27. Clevers, H., At the crossroads of inflammation and cancer. Cell, 2004. 118(6): 671–4.PubMedCrossRefGoogle Scholar
  28. Esquela-Kerscher, A. and F.J. Slack, Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): 259–69.PubMedCrossRefGoogle Scholar
  29. Feinberg, A.P., An epigenetic approach to cancer etiology. Cancer J, 2007. 13(1): 70–4.PubMedCrossRefGoogle Scholar
  30. Feinberg, A.P., R. Ohlsson, and S. Henikoff, The epigenetic progenitor origin of human cancer. Nat Rev Genet, 2006. 7(1): 21–33.PubMedCrossRefGoogle Scholar
  31. Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer, 2004. 4(2): 143–53.PubMedCrossRefGoogle Scholar
  32. Gurdon, J.B., J.A. Byrne, and S. Simonsson, Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci U S A, 2003. 100 Suppl 1: 11819–22.PubMedCrossRefGoogle Scholar
  33. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): 828–33.PubMedCrossRefGoogle Scholar
  34. He, X., et al., A stem cell fusion model of carcinogenesis. J Exp Ther Oncol, 2005. 5(2): 101–9.PubMedGoogle Scholar
  35. Herman, J.G. and S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003. 349(21): 2042–54.PubMedCrossRefGoogle Scholar
  36. Hochedlinger, K., et al., Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev, 2004. 18(15): 1875–85.PubMedCrossRefGoogle Scholar
  37. Huntly, B.J. and D.G. Gilliland, Cancer biology: summing up cancer stem cells. Nature, 2005. 435(7046): 1169–70.PubMedCrossRefGoogle Scholar
  38. Hussain, S.P., L.J. Hofseth, and C.C. Harris, Radical causes of cancer. Nat Rev Cancer, 2003. 3(4): 276–85.PubMedCrossRefGoogle Scholar
  39. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): 415–28.PubMedGoogle Scholar
  40. Jones, P.A. and P.W. Laird, Cancer epigenetics comes of age. Nat Genet, 1999. 21(2): 163–7.PubMedCrossRefGoogle Scholar
  41. Marx, J., Cancer research. Mutant stem cells may seed cancer. Science, 2003. 301(5638): 1308–10.PubMedCrossRefGoogle Scholar
  42. Mathon, N.F. and A.C. Lloyd, Cell senescence and cancer. Nat Rev Cancer, 2001. 1(3):203–13.PubMedCrossRefGoogle Scholar
  43. Mimeault, M. and S.K. Batra, Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev, 2007. 26(1): 203–14.PubMedCrossRefGoogle Scholar
  44. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): 895–902.PubMedCrossRefGoogle Scholar
  45. Sharpless, N. and R. Depinho, Cancer: Crime and punishment. Nature, 2005. 436(7051): 636–637.PubMedCrossRefGoogle Scholar
  46. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): 396–401.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Matteo Conti
    • 1
  1. 1.Laboratory of Clinical Pharmacology and ToxicologyS. Maria delle Croci HospitalItaly

Personalised recommendations