Selfish Evolution

  • Matteo Conti


Hepatitis Lymphoma Adenoma Aspirin Oncol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Readings

  1. Beausejour, C.M. and J. Campisi, Ageing: balancing regeneration and cancer. Nature, 2006. 443(7110): 404–5.PubMedCrossRefGoogle Scholar
  2. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 2005. 6(8): 611–22.PubMedCrossRefGoogle Scholar
  3. Cairns, J., Mutation selection and the natural history of cancer. Nature, 1975. 255(5505): 197–200.PubMedCrossRefGoogle Scholar
  4. Campisi, J., Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 2005. 120(4): 513–22.PubMedCrossRefGoogle Scholar
  5. Campisi, J. and F. d’Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): 729–40.PubMedCrossRefGoogle Scholar
  6. Crespi, B. and K. Summers, Evolutionary biology of cancer. Trends Ecol Evol, 2005. 20(10): 545–52.PubMedCrossRefGoogle Scholar
  7. Dawkins, R., The selfish gene. 1989: Oxford University Press. 366.Google Scholar
  8. DePinho, R.A., The age of cancer. Nature, 2000. 408(6809): 248–54.PubMedCrossRefGoogle Scholar
  9. Feldser, D.M. and C.W. Greider, Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 2007. 11(5): 461–9.PubMedCrossRefGoogle Scholar
  10. Gatenby, R.A., Commentary: carcinogenesis as Darwinian evolution? Do the math! Int J Epidemiol, 2006. 35(5): 1165–7.CrossRefGoogle Scholar
  11. Greaves, M., Darwinian medicine: a case for cancer. Nat Rev Cancer, 2007. 7(3): 213–21.PubMedCrossRefGoogle Scholar
  12. Greenman, C., et al., Patterns of somatic mutation in human cancer genomes. Nature, 2007. 446(7132): 153–8.PubMedCrossRefGoogle Scholar
  13. Hartwell, L., Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell, 1992. 71(4): 543–6.PubMedCrossRefGoogle Scholar
  14. Khong, H.T. and N.P. Restifo, Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol, 2002. 3(11): 999–1005.PubMedCrossRefGoogle Scholar
  15. Kinzler, K.V., B The Genetic Basis of Human Cancer. 1998, New York: McGraw-Hill.Google Scholar
  16. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. Nature, 1998. 396(6712): 643–9.PubMedCrossRefGoogle Scholar
  17. Murgia, C., et al., Clonal origin and evolution of a transmissible cancer. Cell, 2006. 126(3): 477–87.PubMedCrossRefGoogle Scholar
  18. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): 23–8.PubMedCrossRefGoogle Scholar
  19. Pathak, S., et al., Telomere dynamics, aneuploidy, stem cells, and cancer (review). Int J Oncol, 2002. 20(3): 637–41.PubMedGoogle Scholar
  20. Ponder, B.A., Cancer genetics. Nature, 2001. 411(6835): 336–41.PubMedCrossRefGoogle Scholar
  21. Vogelstein, B., et al., Genetic alterations during colorectal-tumor development. N Engl J Med, 1988. 319(9): 525–32.PubMedGoogle Scholar
  22. Vogelstein, B.K., Kenneth W., Genetic Basis of Human Cancer, The. 2002, New York: McGraw-Hill.Google Scholar
  23. Wang, E., M.C. Panelli, and F.M. Marincola, Gene profiling of immune responses against tumors. Curr Opin Immunol, 2005. 17(4): 423–7.PubMedCrossRefGoogle Scholar
  24. Armstrong, L., et al., Epigenetic Modification Is Central to Genome Reprogramming in Somatic Cell Nuclear Transfer. Stem Cells, 2006. 24(4): 805–814.PubMedCrossRefGoogle Scholar
  25. Brabletz, T., et al., Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): 744–9.PubMedCrossRefGoogle Scholar
  26. Calin, G.A., et al., Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 2007. 12(3): 215–29.PubMedCrossRefGoogle Scholar
  27. Clevers, H., At the crossroads of inflammation and cancer. Cell, 2004. 118(6): 671–4.PubMedCrossRefGoogle Scholar
  28. Esquela-Kerscher, A. and F.J. Slack, Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): 259–69.PubMedCrossRefGoogle Scholar
  29. Feinberg, A.P., An epigenetic approach to cancer etiology. Cancer J, 2007. 13(1): 70–4.PubMedCrossRefGoogle Scholar
  30. Feinberg, A.P., R. Ohlsson, and S. Henikoff, The epigenetic progenitor origin of human cancer. Nat Rev Genet, 2006. 7(1): 21–33.PubMedCrossRefGoogle Scholar
  31. Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer, 2004. 4(2): 143–53.PubMedCrossRefGoogle Scholar
  32. Gurdon, J.B., J.A. Byrne, and S. Simonsson, Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci U S A, 2003. 100 Suppl 1: 11819–22.PubMedCrossRefGoogle Scholar
  33. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): 828–33.PubMedCrossRefGoogle Scholar
  34. He, X., et al., A stem cell fusion model of carcinogenesis. J Exp Ther Oncol, 2005. 5(2): 101–9.PubMedGoogle Scholar
  35. Herman, J.G. and S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003. 349(21): 2042–54.PubMedCrossRefGoogle Scholar
  36. Hochedlinger, K., et al., Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev, 2004. 18(15): 1875–85.PubMedCrossRefGoogle Scholar
  37. Huntly, B.J. and D.G. Gilliland, Cancer biology: summing up cancer stem cells. Nature, 2005. 435(7046): 1169–70.PubMedCrossRefGoogle Scholar
  38. Hussain, S.P., L.J. Hofseth, and C.C. Harris, Radical causes of cancer. Nat Rev Cancer, 2003. 3(4): 276–85.PubMedCrossRefGoogle Scholar
  39. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): 415–28.PubMedGoogle Scholar
  40. Jones, P.A. and P.W. Laird, Cancer epigenetics comes of age. Nat Genet, 1999. 21(2): 163–7.PubMedCrossRefGoogle Scholar
  41. Marx, J., Cancer research. Mutant stem cells may seed cancer. Science, 2003. 301(5638): 1308–10.PubMedCrossRefGoogle Scholar
  42. Mathon, N.F. and A.C. Lloyd, Cell senescence and cancer. Nat Rev Cancer, 2001. 1(3):203–13.PubMedCrossRefGoogle Scholar
  43. Mimeault, M. and S.K. Batra, Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev, 2007. 26(1): 203–14.PubMedCrossRefGoogle Scholar
  44. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): 895–902.PubMedCrossRefGoogle Scholar
  45. Sharpless, N. and R. Depinho, Cancer: Crime and punishment. Nature, 2005. 436(7051): 636–637.PubMedCrossRefGoogle Scholar
  46. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): 396–401.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Matteo Conti
    • 1
  1. 1.Laboratory of Clinical Pharmacology and ToxicologyS. Maria delle Croci HospitalItaly

Personalised recommendations