Skip to main content

Multispecies Modeling of Fish Populations

  • Chapter
Book cover Computers in Fisheries Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams PA, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology and Evolution 15:337–341

    Article  PubMed  Google Scholar 

  • Alaska Sea Grant (1999) Ecosystem approaches for fisheries management. University of Alaska Sea Grant Program, Report No. 99-01, Fairbanks

    Google Scholar 

  • Allen PM, McGlade JM (1986) Dynamics of discovery and exploitation: the case of the Scotian Shelf groundfish fisheries. Canadian Journal of Fisheries and Aquatic Sciences 43:1187–1200

    Google Scholar 

  • Andersen KP, Ursin E (1977) A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Meddeleser fra Danmarks Fiskeri-og Havundersogelser 7:319–435

    Google Scholar 

  • Anon (1990) Report of the Multispecies Assessment Working Group. ICES C.M. 1991/Assess:7

    Google Scholar 

  • Atkinson MJ, Grigg RW (1984) Model of a coral reef ecosystem, II. Gross and net benthic primary production at French Frigate Shoals. Coral Reefs 3:13–22

    Article  CAS  Google Scholar 

  • Ault JS, Luo J, Smith SG, Serafy JE, Wang JD, Humston R, Diaz GA (1999) A spatial dynamic multistock production model. Canadian Journal of Fisheries and Aquatic Sciences 56(Suppl.1):4–25

    Article  Google Scholar 

  • Ban-Yam Y (1997) Dynamics of complex systems. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Barnthouse LW, Boreman J, Christensen SW, Goodyear CP, Van Winkle W, Vaughan DS (1984) Population biology in the courtroom: the Hudson River controversy. Bioscience 34:14–19

    Article  Google Scholar 

  • Bax NJ (1985) Application of multi- and univariate techniques of sensitivity analysis to SKEBUB, a biomass-based fisheries ecosystem model, parameterized to Georges Bank. Ecological Modelling 29:353–382

    Article  Google Scholar 

  • Bax NJ (1998) The significance and prediction of predation in marine fisheries. ICES Journal of Marine Science 55:997–1030

    Article  Google Scholar 

  • Bax N, Eliassen JE (1990) Multispecies analysis in Balsfjord, northern Norway: solution and sensitivity analysis of a simple ecosystem model. Journal du Conseil International pour l’Exploration de la Mer 47:175–204

    Google Scholar 

  • Bax NJ, Laevastu T (1990) Biomass potential of large marine ecosystems: a systems approach. In: Sherman K, Alexander LM, Gold BD (eds) Large marine ecosystems: patterns, processes and yields. American Association for the Advancement of Science, Washington, District of Columbia, pp 188–205

    Google Scholar 

  • Bogstad B, Hauge KH, Ultang O (1997) MULTSPEC – a multi-species model for fish and marine mammals in the Barents Sea. Journal of Northwest Atlantic Fisheries Science 22:317–341

    Article  Google Scholar 

  • Brander KM, Mohn RK (1991) Is the whole always less than the sum of the parts? ICES Marine Science Symposia 193:117–119

    Google Scholar 

  • Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates Inc., Sunderland, Massachusetts

    Google Scholar 

  • Clark ME, Rose KA (1997a) Individual-based model of sympatric populations of stream resident rainbow trout and brook char: model description, corroboration, and effects of sympatry and spawning season duration. Ecological Modelling 94:157–175

    Article  Google Scholar 

  • Clark ME, Rose KA (1997b) An individual-based modelling analysis of management strategies for enhancing brook char populations in southern Appalachian streams. North American Journal of Fisheries Management 17:54–76

    Article  Google Scholar 

  • Clark ME, Rose KA (1997c) Factors affecting competitive exclusion of brook char by rainbow trout in southern Appalachian streams: implications of an individual-based model. Transactions of the American Fisheries Society 126:1–20

    Article  Google Scholar 

  • Cohen EB, Grosslein MD, Sissenwine MP, Steimle F, Wright WR (1982) Energy budget of Georges Bank. In: Mercer MC (ed) Multispecies approaches to fisheries management advice. Canadian Special Publication for Fisheries and Aquatic Sciences 59:95–107

    Google Scholar 

  • Collie JS, Spencer PD (1994) Modeling predator-prey dynamics in a fluctuating environment. Canadian Journal of Fisheries and Aquatic Sciences 51:2665–2672

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quinones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interactions and structural changes in “wasp-waist” ecosystems. ICES Journal of Marine Science 57:603–618

    Article  Google Scholar 

  • DeAngelis DL, Mooij WJ (2005) Individual-based modeling of ecological and evolutionary processes. Annual Review of Ecology, Evolution, and Systematics 36:147–168

    Article  Google Scholar 

  • DeAngelis DL, Rose KA (1992) Which individual-based approach is most appropriate for a given problem? In: DeAngelis DL, Gross LJ (eds) Individual-based models and approaches in ecology. Routledge, Chapman and Hall, New York, pp 67–87

    Google Scholar 

  • Doll WE (1993) A post-modern perspective on curriculum. Teachers College Press, New York

    Google Scholar 

  • Ebenman B, Persson L (1988) Size-structured populations: ecology and evolution. Springer, New York

    Google Scholar 

  • Fogarty MJ, Murawski SA (1998) Large-scale disturbance and the structure of marine systems: fishery impacts on Georges Bank. Ecological Applications 8:S6–S22

    Google Scholar 

  • Fogarty MJ, Sissenwine MP, Grosslein MD (1987) Fish population dynamics. In: Backus RH, Bourne DW (eds) Georges bank. MIT Press, Cambridge, Massachusetts, pp 493–507

    Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Grigg RW, Polovina JJ, Atkinson MJ (1984) Model of a coral ref ecosystem, III. Resource limitation, community regulation, fisheries yield and resource management. Coral Reefs 3:23–27

    Article  Google Scholar 

  • Hilborn R, Gunderson D (1996) Chaos and paradigms for fisheries management. Marine Policy 20:87–89

    Article  Google Scholar 

  • Hollowed AB, Bax N, Beamish R, Collie J, Fogarty M, Livingston P, Pope J, Rice JC (2000) Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES Journal of Marine Science 57:707–719

    Article  Google Scholar 

  • Horbowy J (1996) The dynamics of Baltic fish stocks on the basis of a multispecies stock-production model. Canadian Journal of Fisheries and Aquatic Sciences 53:2115–2125

    Article  Google Scholar 

  • Jackson LJ (1996) A simulation model of PCB dynamics in the Lake Ontario food web. Ecological Modelling 93:43–56

    Article  CAS  Google Scholar 

  • Jarre A, Muck P, Pauly D (1991) Two approaches for modeling fish stock interactions in the Peruvian upwelling ecosystem. ICES Special Symposia 193:171–184

    Google Scholar 

  • Jones ML, Koonce, JF, O’Gorman R (1993) Sustainability of hatchery-dependent salmonine fisheries in Lake Ontario: the conflict between predator demand and prey supply. Transactions of the American Fisheries Society 122:1002–1018

    Article  Google Scholar 

  • Kendall AW, Schumacher JD, Kim S (1996) Walleye pollock recruitment in the Shelikof Strait: applied fisheries oceanography. Fisheries Oceanography 5(Suppl 1):4–18

    Article  Google Scholar 

  • Koen-Alonso M, Yodzis P (2005) Multispecies modelling of some components of the marine community of northern and central Patagonia, Argentina. Canadian Journal of Fisheries and Aquatic Sciences 62:1490–1512

    Article  Google Scholar 

  • Laevastu T, Larkins HA (1981) Marine fisheries ecosystem: its quantitative evaluation and management. Fishing News Books Ltd., Farnham, England

    Google Scholar 

  • Latour RJ, Brush MJ, Bonzek CF (2003) Toward ecosystem-based fisheries management: strategies for multispecies modeling and associated data requirements. Fisheries 28:10–22

    Article  Google Scholar 

  • Link J (2002) Does food web theory work for marine ecosystems? Marine Ecology Progress Series 230:1–9

    Article  Google Scholar 

  • Matsuda H, Katsukawa T (2002) Fisheries management based on ecosystem dynamics and feedback control. Fisheries Oceanography 11:366–370

    Article  Google Scholar 

  • May RM, Beddington JR, Clark CW, Holt SJ, Laws RM (1979) Management of multispecies fisheries. Science 205:267–275

    Article  PubMed  Google Scholar 

  • McDermot D, Rose KA (1999) An individual-based model of lake fish communities: application to piscivore stocking in Lake Mendota. Ecological Modelling 125:67–102

    Article  Google Scholar 

  • Micheli F (1999) Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285:1396–1398

    Article  PubMed  CAS  Google Scholar 

  • Murawski SA (1984) Mixed-species yield-per-recruitment analyses accounting for technical interactions. Canadian Journal of Fisheries and Aquatic Sciences 41:897–916

    Article  Google Scholar 

  • Murawski SA, Lange AM, Iodine JS (1991) An analysis of technological interactions among Gulf of Maine mixed-species fisheries. ICES Marine Science Symposia 193:237–252

    Google Scholar 

  • NMFS (National Marine Fisheries Service) (1999) Ecosystem-based fishery management. A report to Congress by the Ecosystems Principles Advisory Panel. United States Department of Commerce, Silver Spring, Maryland

    Google Scholar 

  • Pace ML, Glasser JE, Pomeroy LR (1984) A simulation analysis of continental shelf food webs. Marine Biology 82:47–63

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Article  Google Scholar 

  • Patten BC (1975) A reservoir cove ecosystem model. Transactions of the American Fisheries Society 104:569–619

    Article  Google Scholar 

  • Patten BC et al. (1975) Total ecosystem model for a cove in Lake Texoma. In: PattenBC (ed) Systems analysis and simulation in ecology, Volume III. Academic Press, New York, pp 205–421

    Google Scholar 

  • Ploskey GP, Jenkins RM (1982) Biomass model for reservoir fish and fish-food interactions, with implications for management. North American Journal of Fisheries Management 2:105–121

    Article  Google Scholar 

  • Polovina JJ (1984) Model of a coral reef ecosystem, I. The ECOPATH model and its application to French Frogate Shoals. Coral Reefs 3:1–11

    Article  Google Scholar 

  • Pope JG (1976) The effect of biological interaction on the theory of mixed fisheries. International Commission for the Northwest Atlantic Fisheries Selected Papers 1:157–162

    Google Scholar 

  • Pope JG (1989) Multispecies extensions to age-structured assessment models. American Fisheries Society Symposium 6:102–111

    Google Scholar 

  • Quinn TJ, Deriso RB (1999) Quantitative fish dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Rose, KA, Cowan JH (2003) Data, models, and decisions in US marine fisheries management: lessons for ecologists. Annual Review of Ecology, Evolution, and Systematics 34:127–151

    Article  Google Scholar 

  • Rose KA, Cowan JH, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density-dependence in fish populations: importance, controversy, understanding, and prognosis. Fish and Fisheries 2:293–327

    Article  Google Scholar 

  • Rose KA, Rutherford ES, McDermott D, Forney JL, Mills EL (1999) Individual-based model of walleye and yellow perch populations in Oneida Lake. Ecological Monographs 69:127–154

    Article  Google Scholar 

  • Rose KA, Tyler JA, SinghDermot D, Rutherford ES (1996) Multispecies modeling of fish populations. In: Megrey BA, Moksness E (eds) Computers in fisheries research. Chapman and Hall, New York, pp 194–222

    Google Scholar 

  • Runge JA, Franks PJS, Gentleman WC, Megrey BA, Rose KA,Werner FE, Zakardjian B (2004) Diagnosis and prediction of variability in secondary production and fish recruitment processes: developments in physical-biological modelling. In: Robinson AR, Brink K (eds) The global coastal ocean: multi-scale interdisciplinary processes, Volume 13, The Sea. Harvard University Press, Cambridge, Massachusetts, pp 413–473

    Google Scholar 

  • Rutherford ES, Rose KA, McDermot D, Mills EL, Forney JL Mayer CM, Rudstam LG (1999) Individual-based model simulations of zebra mussel (Dreissena polymorpha) – induced energy shunt on walleye (Stizostedion vitreum) and yellow perch (Perca flavescens) populations in Oneida Lake, NY. Canadian Journal of Fisheries and Aquatic Sciences 56:2148–2160

    Article  Google Scholar 

  • Sable SE, Rose KA (2008) A Comparison of individual-based and matrix projection models for simulating yellow perch population dynamics in Oneida Lake, New York, USA. Ecological Modelling 215: 105–121

    Google Scholar 

  • Sable SE, Rose KA (in press) Simulating predator-prey dynamics of walleye and yellow perch in Oneida Lake: a comparison of structured community models. In: Mills EL, Rudstam LG, Jackson JR, Stewart DJ (eds) Oneida Lake: long-term dynamics of a managed ecosystem and its fisheries. American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Shin YJ, Cury P (2001) Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquatic Living Resources 14:65–80

    Article  Google Scholar 

  • Shin YJ, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Canadian Journal of Fisheries and Aquatic Sciences 61:414–431

    Article  Google Scholar 

  • Sparre P (1991) Introduction to multispecies virtual population analysis. ICES Marine Science Symposia 193:12–21

    Google Scholar 

  • Spencer PD, Collie JS (1995) A simple predator-prey model of exploited fish populations incorporating alternative prey. ICES Journal of Marine Science 53:615–628

    Article  Google Scholar 

  • Steele JH, Henderson EW (1981) A simple plankton model. American Naturalist 117:676–691

    Article  Google Scholar 

  • Strange EM, Moyle PB, Foin TC (1993) Interactions between stochastic and deterministic processes in stream fish community assembly. Environmental Biology of Fishes 36:1–15

    Article  Google Scholar 

  • Thomson RB, Butterworth DS, Boyd IL, Croxall JP (2000) Modeling the consequence of Antarctic krill harvesting on Antarctic fur seals. Ecological Applications 10:1806–1819

    Article  Google Scholar 

  • Tjelmeland S, Bogstad B (1998) MULTSPEC – a review of a multispecies modelling project for the Barents Sea. Fisheries Research 37:127–142

    Article  Google Scholar 

  • Tsou TS, Collie JS (2001) Estimating predation mortality in the Georges Bank fish community. Canadian Journal of Fisheries and Aquatic Sciences 58:908–922

    Article  Google Scholar 

  • Tyler JA, Rose, KA (1994) Individual variability and spatial heterogeneity in fish population models. Reviews in Fish Biology and Fisheries 4:91–123

    Article  Google Scholar 

  • Van Nes EH, Lammens EHRR, Scheffer M (2002) PISCATOR, an individual-based model to analyze the dynamics of lake fish communities. Ecological Modelling 152:261–278

    Article  Google Scholar 

  • Vinther M, Lewy P, Thomsen L, Petersen U (2001) Specification and documentation of the 4 M package containing Multi-species, Multi-fleet and Multi-area models. Danish Institute for Fisheries Research, Charlottenlund

    Google Scholar 

  • Walsh JJ (1981) A carbon budget for overfishing off Peru. Nature 290:300–304

    Article  Google Scholar 

  • Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries 7:139–172

    Article  Google Scholar 

  • Whipple SJ, Link JS, Garrison LP, Fogarty MJ (2000) Models of predation and fishing mortality in aquatic ecosystems. Fish and Fisheries 1:22–40

    Article  Google Scholar 

  • Wilson JA, Acheson JM, Metcaffe M, Kieban P (1994) Chaos, complexity and community management of fisheries. Marine Policy 18: 291–305

    Article  Google Scholar 

  • Wilson JA, French J, Kleban P, McKay SR, Townsend R (1991a) Chaotic dynamics in a multiple species fishery: a model of community predation. Ecological Modelling 58:303–322

    Article  Google Scholar 

  • Wilson JA, Kelban P, McKay SR, Townsend RE (1991b) Management of multispecies fisheries with chaotic population dynamics. ICES Marine Science Symposia 193:287–300

    Google Scholar 

  • Yodzis P (1994) Predator-prey theory and the management of multispecies fisheries. Ecological Applications 4:51–58

    Article  Google Scholar 

  • Yodzis P (1998) Local trophicdynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. Journal of Animal Ecology 67:635–658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rose, K.A., Sable, S.E. (2009). Multispecies Modeling of Fish Populations. In: Megrey, B.A., Moksness, E. (eds) Computers in Fisheries Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8636-6_12

Download citation

Publish with us

Policies and ethics