A Reduced Order Model for Vortex–Induced Vibration of a Vertical Offshore Riser in Lock–in

  • Marko Keber
  • Marian Wiercigroch
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 8)


Invariant Manifold Reduce Order Model Modal Space Nonlinear Normal Mode Parameter Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. D. Bishop, A. Y. Hassan (1964) The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 277:51–75Google Scholar
  2. 2.
    R. D. Gabbai, H. Benaroya (2005) An overview of modelling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 282:575–616CrossRefGoogle Scholar
  3. 3.
    M. L. Facchinetti, E. de Langre, F. Biolley (2004) Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 19:123–140CrossRefGoogle Scholar
  4. 4.
    H. Marcollo, J. B. Hinwood (2006) On shear flow single mode lock-in with both cross-flow and in-line mechanisms. Journal of Fluids and Structures, 22:197–211CrossRefGoogle Scholar
  5. 5.
    Blevins R D (1990) Flow–induced vibration. Van Nostrand Reinhold, New YorkGoogle Scholar
  6. 6.
    Chakrabarti S K (1987) Hydrodynamics of Offshore Structures, Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Païdoussis M P (1998) Fluid–structure interactions: Slender Structures and Axial Flow (Volume 1). Academic Press, San Diego London New YorkGoogle Scholar
  8. 8.
    M. Keber, M. Wiercigroch (2007) Comparison of Dynamical Responses of an Offshore Riser with Linear and Nonlinear Structural Characteristics Through Nonlinear Normal Modes. In: Proceedings of the OCEANS’07 Conference, Aberdeen, UKGoogle Scholar
  9. 9.
    Meirovitch L (1967) Analytical methods in vibrations. The Macmillan Company, Toronto OntarioMATHGoogle Scholar
  10. 10.
    S. W. Shaw, C. Pierre (1993) Normal modes for non-linear vibratory systems. Journal of Sound and Vibration, 164:85–241CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marko Keber
    • 1
  • Marian Wiercigroch
    • 1
  1. 1.Centre for Applied Dynamics Research,School of EngineeringUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations