Advertisement

Controlled Band Gap Modulation of Hydrogenated Dilute Nitrides by SEM-Cathodoluminescence

  • G Salviati
  • L Lazzarini
  • N Armani
  • M Felici
  • A Polimeni
  • M Capizzi
  • F Martelli
  • S Rubini
  • A Franciosi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)

Summary

Hydrogen is known to passivate nitrogen in dilute nitrides, such as Ga(AsN) and Ga(PN). By focusing an electron beam on the surface of hydrogenated GaAs1−xNx/GaAs (GaP1−yNy/GaP) we remove hydrogen atoms from their passivation sites, thus leading to a controlled decrease of the crystal band gap in the spatial region where the e-beam is steered. The area designated by the electron beam acts in all respects as a potential well for carriers. Cycling the samples several times between T=5 K and room temperature, the same CL images and spectra were recorded thus demonstrating the thermal stability of the H displacement process. The 100% pre hydrogenation conditions are achieved after 30–40 sec of irradiation at T=5 K.

Keywords

Electron Beam Electron Beam Irradiation Hydrogenate Dilute Solid Source Molecular Beam Epitaxy Passivation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Capasso F 1987 Science 235, 172PubMedCrossRefADSGoogle Scholar
  2. 2.
    Weisbuch C and Vinter B 1991 Quantum Semiconductor Structures (Academic Press, San Diego, USA)Google Scholar
  3. 3.
    Gréus Ch, Butov L, Daiminger F, Forchel A, Knipp P A and Reinecke T L 1993 Phys. Rev. B 47, 7626 (R)CrossRefADSGoogle Scholar
  4. 4.
    Bimberg D, Grundmann M and Ledentsov N N 1998 Quantum Dot Heterostructures (Wiley, Chichester, UK)Google Scholar
  5. 5.
    Polimeni A, Henini M, Patanè A, Eaves L, Main P C and Hill G 1998 Appl. Phys. Lett. 73, 1415CrossRefADSGoogle Scholar
  6. 6.
    Ciatto G, Boscherini F, Amore Bonapasta A, Filippone F, Polimeni A and Capizzi M 2005 Phys. Rev. B 71, 201301CrossRefADSGoogle Scholar
  7. 7.
    Physics and Applications of Dilute Nitrides, Eds I A Buyanova and W M Chen, 2004 (Taylor & Francis, New York, USA)Google Scholar
  8. 8.
    Steinle G, Mederer F, Kicherer M, Michalzik R, Kristen G, Egorov A Y, Riechert H, Wolf H D, and Ebeling K J 2001 Electron. Lett. 37, 632CrossRefGoogle Scholar
  9. 9.
    Kurtz S R, Allerman A A, Jones E D, Gee J M, Banas J J and Hammons B E 1999 Appl. Phys. Lett. 74, 729CrossRefADSGoogle Scholar
  10. 10.
    Welty R J, Xin H, Tu C W and Asbeck P M 2004 J. Appl. Phys. 95, 327CrossRefADSGoogle Scholar
  11. 11.
    Ignatov A, Patane' A, Makarovsky O and Eaves L 2006 Appl. Phys. Lett. 88, 032107CrossRefADSGoogle Scholar
  12. 12.
    Polimeni A, Baldassarri G H v. H, Bissiri M, Fischer M, Reinhardt M and Forchel A 2001 Phys. Rev. B 63, 201304 (R)CrossRefADSGoogle Scholar
  13. 13.
    Baldassarri G H v. H, Bissiri M, Polimeni A, Capizzi M, Fischer M, Reinhardt M and Forchel A 2001 Appl. Phys. Lett. 78, 3472CrossRefADSGoogle Scholar
  14. 14.
    Amore Bonapasta A, Filippone F, Giannozzi P, Capizzi M and Polimeni A 2002 Phys. Rev. Lett. 89, 216401PubMedCrossRefADSGoogle Scholar
  15. 15.
    Polimeni A, Baldassarri G H v. H, Masia F, Frova A, Capizzi M, Sanna S, Fiorentini V, Klar P J and Stolz W 2004 Phys. Rev. B 69, 041201 (R)CrossRefADSGoogle Scholar
  16. 16.
    Polimeni A, Ciatto G, Ortega L, Jiang F, Boscherini F, Filippone F, Amore Bonapasta A, Stavola M and Capizzi M 2003 Phys. Rev. B 68, 085204 (R)CrossRefADSGoogle Scholar
  17. 17.
    Felici M, Polimeni A, Salviati G, Lazzarini L, Armani N, Masia F, Capizzi M, Martelli F, Lazzarino M, Bais G, Piccin M, Rubini S and Franciosi A 2006 Advanced Materials 18, 1993CrossRefGoogle Scholar
  18. 18.
    Pavesi M, Manfredi M, Salviati G, Armani N, Rossi F, Meneghesso G, Levada S, Zanoni E, Du S and Eliashevich I 2004 Appl. Phys. Lett. 84, 3403CrossRefADSGoogle Scholar
  19. 19.
    Silvestre S, Bernard-Loridant D, Constant E, Constant M and Chevallier J 2000 Appl. Phys. Lett., 77, 3206CrossRefADSGoogle Scholar
  20. 20.
    Myhailenko S, Ke W K and Hamilton B 1983 J. Appl. Phys. 54, 862CrossRefADSGoogle Scholar
  21. 21.
    Chao L-L, Cargill III G S, Levy M, Osgood Jr R M and McLane G F 1997 Appl. Phys. Lett. 70, 408CrossRefADSGoogle Scholar
  22. 22.
    Polimeni A, Bissiri M, Felici M, Capizzi M, Buyanova I A., Chen W M, Xin H P and Tu C W 2003 Phys. Rev. B 67, 201303 (R)CrossRefADSGoogle Scholar
  23. 23.
    Leibiger G, Gottschalch V, Rheinländer B, Šik J and Schubert M J 2001 Appl. Phys. 89, 4927CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G Salviati
    • 1
  • L Lazzarini
    • 1
  • N Armani
    • 1
  • M Felici
    • 2
  • A Polimeni
    • 2
  • M Capizzi
    • 2
  • F Martelli
    • 3
  • S Rubini
    • 2
  • A Franciosi
    • 2
  1. 1.IMEM-CNRParco Area delle Scienze 37/ABremenItaly
  2. 2.CNISM and Physics DepartmentUniversity of RomeItaly
  3. 3.TASC-INFM-CNR and CENMATUniversity of TriesteTriesteItaly

Personalised recommendations