Nitrogen-Enhanced Indium Segregation in (Ga,In)(N,As)/GaAs Multiple Quantum Wells

  • E Luna
  • A Trampert
  • E-M Pavelescu
  • M Pessa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)


Transmission electron microscopy (TEM) is used to determine the composition of quaternary (Ga,In)(N,As) quantum wells (QWs). Through a combined analysis of the chemically sensitive (002) dark-field images and lattice-resolving high-resolution TEM images, the local distributions of nitrogen and indium in the growth direction are determined. In particular, we were able to directly detect the existence of indium segregation in (Ga,In)(N,As) QWs. A comparison with the indium distribution profile in the nitrogen-free (In,Ga)As QWs, grown under similar conditions, revealed that incorporating N into the alloy enhanced indium segregation.


Transmission Electron Microscopy Analysis Dark Field Transmission Electron Microscopy Field Transmission Electron Microscopy Image Dark Field Transmission Electron Microscopy Image Dynamical Diffraction Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S and Yazawa Y 1996 Jpn. J. Appl. Phys. 35, 1273CrossRefADSGoogle Scholar
  2. 2.
    Jaschke G, Averbeck R, Geelhaar L and Riechert H 2005 J. Cryst. Growth 278, 224CrossRefADSGoogle Scholar
  3. 3.
    Liu H F, Xiang N and Chua S J 2006 Appl. Phys. Lett. 89, 071905CrossRefADSGoogle Scholar
  4. 4.
    Grillo V, Albrecht M, Remmele T, Strunk H P, Egorov A Y and Riechert H 2001 J. Appl. Phys. 90, 3792CrossRefADSGoogle Scholar
  5. 5.
    Pavelescu E -M, Slotte J, Dhaka V D S, Saarinen K, Antohe S, Cimpoca Gh and Pessa M 2006 J. Cryst. Growth 297, 33CrossRefADSGoogle Scholar
  6. 6.
    Du K, Rau Y, Jin-Phillipp N Y and Phillipp F 2002 J. Mater. Sci. Technol. 18, 135Google Scholar
  7. 7.
    Chauveau J -M, Trampert A, Pinault M -A, Tournié E, Du K and Ploog K H 2003 J. Cryst. Growth 251, 383CrossRefADSGoogle Scholar
  8. 8.
    Doyle P A and Turner P S 1968 Acta Crystallogr. A24, 390Google Scholar
  9. 9.
    Glas F 2004 Philos. Mag. 84, 2055CrossRefADSGoogle Scholar
  10. 0.
    Rosenauer A, Schowalter M, Glas F and Lamoen D 2005 Phys. Rev. B 72, 085326CrossRefADSGoogle Scholar
  11. 1.
    Cagnon J, Buffat P A, Stadelmann P A and Leifer K 2003 Inst. Phys. Conf. Ser. 180, 203Google Scholar
  12. 2.
    Patriarche G, Largeau L, Harmand J C and Gollub D 2004 Appl. Phys. Lett. 84, 203CrossRefADSGoogle Scholar
  13. 3.
    Brandt O, Waltereit P and Ploog K H 2002 J. Phys. D 35, 577CrossRefADSGoogle Scholar
  14. 4.
    Kong X, Trampert A, Tournié E and Ploog K H 2005 Appl. Phys. Lett. 87, 171901CrossRefADSGoogle Scholar
  15. 5.
    Muraki K, Fukatsu S, Shiraki Y and Ito R 1992 Appl. Phys. Lett. 61, 557CrossRefADSGoogle Scholar
  16. 6.
    Litvinov D, Gerthsen D, Rosenauer A, Schowalter M, Passow T, Feinäugle P and Hetterich M 2006 Phys. Rev. B 74, 165306CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E Luna
    • 1
  • A Trampert
    • 1
  • E-M Pavelescu
    • 1
    • 2
  • M Pessa
    • 1
    • 2
  1. 1.Paul-Drude Institute for Solid State ElectronicsBerlinGermany
  2. 2.ORC, Tampere University of TechnologyTampereFinland

Personalised recommendations