Hydrothermal Processes and Systems on Other Planets and Satellites: Clues for the Search of Extraterrestrial Life

Abstract

In this chapter, I discuss hydrothermal processes that almost certainly operate, or have operated, on other planets and satellites in our Solar System, including Mars, where liquid water is, or was, present (Baker 2001). In addition, the possible nature of hydrothermal systems on satellite bodies of Jupiter (Europa and Ganymede) and Saturn (Enceladus and Titan), are also briefly considered.

Keywords

Methane Convection Silicate Sandstone Explosive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott DH, Isley E (2002) Extraterrestrial influences on mantle plume activity. Earth Planet Sci Lett 205: 53–62Google Scholar
  2. Andrews-Hanna JC, Phillips RJ, Zuber MT (2007) Meridiani Planum and the global hydrology of Mars. Nature 446: 163–166Google Scholar
  3. Anguita F, Fernandez C, Cordero G, Carrasquilla S, Anguita J, Nunez A, Rodriguez S, Garcia J (2006) Evidences for a Noachian-Hesperian orogeny in Mars. Icarus 185: 331–357Google Scholar
  4. Atreya SK, Adams EY, Niemann HB, Demick-Montelara JE, Owen TC, Fulchignoni M, Ferri F, Wilson EH (2006) Titan’s methane cycle. Planet Space Sci 54: 1177–1187Google Scholar
  5. Aubrey A, Cleaves HJ, Chalmers JH, Mathies RA, Grunthaner FJ, Ehrefreunbd P, Bada JL (2006) Sulphate minerals and organic compounds on Mars. Geology 34(5): 357–360Google Scholar
  6. Baker VR (2001) Water and the Martian landscape. Nature 412: 228–236Google Scholar
  7. Baker VR (2006a) Water and the evolutionary geological history of Mars. Boll Soc Geol It 125: 357–369Google Scholar
  8. Baker VR (2006b) Geomophological evidence for water on Mars. Elements 2: 139–143Google Scholar
  9. Baker VR (2007) Water cycling on Mars. Nature 446: 150–151Google Scholar
  10. Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G, Kale VS (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352: 589–594Google Scholar
  11. Ball P (2005) Seeking the solution. Nature 436: 1084–1085Google Scholar
  12. Bandfield JL, Hamilton VE, Christiensen PR (2000) A global view of Martian surface compositions from MGS-TES. Science 287: 1626–1630Google Scholar
  13. Becker L, Popp B, Rust T, Bada JL (1999) The origin of organic matter in the Martian meteorite ALH84001. Earth Planet Sci Lett 167: 71–79Google Scholar
  14. Bell JF and 39 others (2004) Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum. Science 306: 1703–1709Google Scholar
  15. Benison KC (2006) A Martian analog in Kansas: comparing Martina strat with Permian acid saline lake deposits. Geology 34(5): 385–388Google Scholar
  16. Benison KC, Mormile MR, Oboh-Ikuenobe FE, Bowen F, Hong B-Y, Jagniecki EA, Story SL (2005). Modern microbial life in saline lakes and pans in Australia: a field perspective. Geol Soc Am Ann Meeting, SLC 2005, Abstracts with Programs: 124Google Scholar
  17. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the Universe? Curr Opin Chem Biol 8: 672–689Google Scholar
  18. Bibring JP (2005) Comparative planetology, Mars and exobiology. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, vol I. Springer, Berlin, pp 352–383Google Scholar
  19. Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P and the OMEGA Team (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307: 1576–1581Google Scholar
  20. Bibring JP, Langevin Y, Mustard, JF, Poulet F, Arvidosn R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F & the OMEGA team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312: 400–404Google Scholar
  21. Bibring JP, and 11 others (2007) Coupled ferric oxides and sulfates on the Martian surface. Science 317: 1206–1210Google Scholar
  22. Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiseman H, Reese Y (1999) The age of the carbonate in Martian meteorite ALH84001. Science 286: 90–94Google Scholar
  23. Boslough MB, Chael EP, Trucano TG, Crawford DA, Campbell DI (1996) Axial focusing of impact energy in the Earth's interior: a possible link to flood basalts and hotspots. Geol Soc Am Spec Pap 307: 541–50Google Scholar
  24. Bowen BB, Benison KC, Oboh-Ikuenobe FE, Story S, Mormile MR (2008) Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia. Earth Planet Sci Lett doi:10.1016/j.epsl.2007.12.023Google Scholar
  25. Brack A (2005) From the origin of life on Earth to life in the Universe. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, vol I. Springer, Berlin, pp 3–23Google Scholar
  26. Bradley JP, Harvey RP, McSween HY (1996) Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapour phase growth. Geochim Cosmochim Acta 60: 5149–5155Google Scholar
  27. Burke K (1996) The African plate. S Afr J Geol 99: 341–409Google Scholar
  28. Burr DM, Grier JA, McEwen AS, Keszthelyi L (2002) Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159: 53–73Google Scholar
  29. Cabrol NA, Grin EA, Dawidowicz G (1996) Ma’adim Vallis revisited through new tpographic data: evidence for an ancient intravalley lake. Icarus 123: 269–283Google Scholar
  30. Cabrol NA, Grin EA (2002) Overview on the formation of paleolakes and ponds on Mars. Glob Planet Change 35: 199–219Google Scholar
  31. Carr, MH (1981) The surface of Mars. Yale University Press, New Haven and LondonGoogle Scholar
  32. Carr, M H (1990) Mars. In: Beatty JK, Chaikin A (eds) The New Solar System, Cambridge Univ Press, Sky Publishing Corp, Cambridge, pp 53–76Google Scholar
  33. Carr MH (1996a) Water on early Mars. In: Bock GR, Goode JA (eds), Evolution of hydrothermal systems on Earth (and Mars), Ciba Foundation Symposium 202, John Wiley & Sons, Chichester, pp 249–264Google Scholar
  34. Carr MH (1996b) Water on Mars. Oxford University Press, OxfordGoogle Scholar
  35. Carr MH (1999) Mars. In: Beatty JK, Petersen CC, Chaikin A (eds) The New Solar System, Cambridge Univ Press, Sky Publishing Corp, pp. 141–156Google Scholar
  36. Carr MH (2006) The surface of Mars. Cambridge Univ Press, CambridgeGoogle Scholar
  37. Carr MH, Garvin JB (2001) Mars exploration, Nature 412: 250–253Google Scholar
  38. Carr MH, Kuzmin RO, Masson P (1993) Geology of Mars. Episodes 16: 307–315Google Scholar
  39. Catling DC (2004) On Earth as it is on Mars? Nature 429: 707–708Google Scholar
  40. Catling DC (2007) Ancient fingerprints in the clay. Nature 448: 31–32Google Scholar
  41. Chan MA, Beitler B, Parry WT, Ormö J, Komatsu G (2004) A possible terrestrial analogue for haematite concretions on Mars. Nature 429: 731–734Google Scholar
  42. Chapman MG (2002a) Sub-ice volcanoes and ancient ocean/lakes: a Martian challenge. Glob Planet Change 35: 185–198Google Scholar
  43. Chapman MG (2002b) Layered, massive and thin sediments on Mars: possible Late Noachian to late Amazonian tephra? Geol Soc Lond. Spec Publ 202: 273–293Google Scholar
  44. Chapman MG (ed) (2007) The geology of Mars – evidence from Earth-based analogs. Cambridge University Press, CambridgeGoogle Scholar
  45. Chavdarian GV, Sumner DY (2006) Cracks and fins in sulphate sand: evidence for recent mineral-atmospheric water cycling in Meridiani Planum outcrops? Geology 34: 229–232Google Scholar
  46. Chevrier V, Poulet F, Bibring JP (2007) Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448: 60–63Google Scholar
  47. Christensen PR (2006) Water at the poles and in permafrost regions of Mars. Elements 2: 151–155Google Scholar
  48. Christensen PR, Bandfield JL, Clark Edgett KS, Hamilton VE, Hoefen T, Kieffer HH, Kuzmin RO, Lane MD, Malin MC, Morris RV, Pearl JC, Pearson R, Roush TL, Ruff SW, Smith MD (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. J Geophys Res 105: 9623–9643Google Scholar
  49. Christensen PR, Morris R, Lane MD, Bandfield JL, Malin MC (2001) Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J Geophys Res 106: 23873–23885Google Scholar
  50. Christensen PR and 26 others (2004a) Initial results from the Mini-TES experiment in Gusev crater from the spirit rover. Science 305: 837–842Google Scholar
  51. Christensen PR and 26 others (2004b) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306: 1733–1739Google Scholar
  52. Christensen PR, Gorelick NS, Mehall GL, Murray KC (2006) THEMIS public data release. Planetary Data System Node, Ariz State University, http://themis.data.asu.edu
  53. Clancy P, Brack A, Horneck G (2005) Looking for life, searching the Solar System. Cambridge University Press, CambridgeGoogle Scholar
  54. Clifford SM, Parker TJ (2001) The evolution of the Martina hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154: 40–79.Google Scholar
  55. Clifford SM and 52 others (2000) The state and future of Mars polar science and exploration. Icarus 144: 210–242Google Scholar
  56. Cradock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J. Geophys Res 107(E11): 5111, doi:10.1029/2001JE001505Google Scholar
  57. Crumpler LS, Aubele JC, Zimbelman JR (2007) Volcanic features of New Mexico analogous to volcanic features on Mars. In: Chapman M (ed) The geology of Mars – evidence from Earth-based analogs, Cambridge University Press, Cambridge, pp 95–125Google Scholar
  58. Davies P (1999) The fifth miracle: the search for the origin of life. Simon Schuster, New YorkGoogle Scholar
  59. Dohm JM, Tanaka KL (1999) Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution. Planet Space Sci 47: 411–431Google Scholar
  60. Dohm JM and 21 others (2008) Recent geological and hydrological activity on Mars: the Tharsis/Elysium corridor. Planet Space Sci, doi:10.1016/j.pss.2008.01.001Google Scholar
  61. Dromart G, Quantin C, Broucke O (2007) Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars. Geology 35: 363–366Google Scholar
  62. Elachi C and 34 others (2005) Cassini radar views the surface of Titan. Science 308: 970–974Google Scholar
  63. Elkins-Tanton L, Hager BH (2005) Giant meteoroid impacts can cause volcanism. Earth Planet Sci Lett 239: 219–32Google Scholar
  64. Ernst RE, Baragar WRA (1992) Evidence from magnetic fabric for the flow pattern of magma in the MacKenzie giant radiating dyke swarm. Nature 356: 511–513Google Scholar
  65. Ernst RE, Grosfils E, Mège D (2001) Giant dyke swarms: Earth, Venus and Mars. Ann Rev Earth Planet Sci 29: 489–534Google Scholar
  66. Fairén AG, Fernández-Remolar D, Dohn JM, Baker VR, Amils R (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431: 423–426Google Scholar
  67. Farmer JD (1996) Hydrothermal systems on Mars: an assessment of present evidence. Evolution of hydrothermal ecosystems on Earth (and Mars?) In: Bock, GR, Goode, JA eds., Evolution of hydrothermal systems on Earth (and Mars). Ciba Foundation Symposium 202, John Wiley & Sons, Chichester, pp 273–299Google Scholar
  68. Farr TG (2004) Terrestrial analogs to Mars: the NRC community decadal report. Planet Space Sci 52: 3–10Google Scholar
  69. Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  70. Fernández-Remolar DC, Morris RV, Gruener JE, Amils R, Knoll AH (2005) The Rio Tinto basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240: 149–167Google Scholar
  71. Frey HV (2006) Impact constraints on the age and origin of the lowlands of Mars. Geophys Res Lett 33: L08S02, doi:1029/2005/GL024484Google Scholar
  72. Geissler P (2000) Cryovolcanism in the outer Solar System. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 785–802Google Scholar
  73. Gellert R and 14 others (2004) Chemistry of rocks and soils in Gusev crater from the Alpha particle X-ray spectrometer. Science 305: 829–832Google Scholar
  74. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvdison J, LeMoulélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307: 1587–1591Google Scholar
  75. Glikson AY, Haines PW (eds) (2005) Shoemaker memorial issue on the Australian impact record: 1997–2005 update. Aust J. Earth Sci 52(4/5)Google Scholar
  76. Gonzales G, Brownlee D, Ward PD (2001) The Galactic Habitable Zone: Galactic chemical evolution. Icarus 152: 185–200Google Scholar
  77. Grant WD (2004) Life at low water activity. Phil Trans Roy Soc B359: 1249–1267Google Scholar
  78. Greeley R (1987) Release of juvenile water on Mars: estimated amount and timing associated with volcanism. Science 236: 1653–1654Google Scholar
  79. Greeley R (1999) Europa. In: Beatty JK, Chaikin A (eds) The New Solar System. Cambridge University Press, Sky Publishing Corp, Cambridge, pp 253–262Google Scholar
  80. Greeley R, Chyba CF, Head JM, McCord TB, McKinnon WB, Pappalardo RT, Figueredo PH (2004) Geology of Europa. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter – the planet, satellites and magnetosphere. Cambridge: Cambridge University Press, pp 329–362Google Scholar
  81. Greenberg R, Randall Tufts B, Geissler P, Hoppa GV (2002) Europa’s crust and ocean: how tides create a potentially habitable physical setting. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – the quest for the conditions of life, Springer, Berlin, pp 111–124Google Scholar
  82. Grin EA, Cabrol NA (1997) Limnological analysis of Gusev crater paleolake, Mars.Icarus 130: 461–474Google Scholar
  83. Gulick VC (1998) Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J Geophys Res 103: 19365–19387Google Scholar
  84. Hagstrum JT (2005) Antipodal hot spots and bipolar catastrophes: were oceanic karge-body impacts the cause? Earth Planet Sci Lett 236: 13–27Google Scholar
  85. Harder H, Christensen UR (1996) A one plume model of Martian mantle convection. Nature 380: 507–509Google Scholar
  86. Hartmann W (1979) The watery past of Mars. New Sci, 82: 1083–1085Google Scholar
  87. Head JW, Solomon SC (1981) Tectonic evolution of the terrestrial planets. Science 213: 62–76Google Scholar
  88. Head JW, Coffin MF (1997) Large igneous provinces: a planetary perspective. Am Geophys Union Monograph 100: 411–438Google Scholar
  89. Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomsom BJ (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286: 2134–2137Google Scholar
  90. Head JW, Wilson L (2002) Mars: a review and synthesis of general environments and geological settings of magma-H2O interactions. Geol Soc Lond Spec Publ 202: 27–57Google Scholar
  91. Head JW, Wilson, L, Dickson J, Neukum G (2006) The Huygens-Hellas giant dike system on Mars: implications for Late Noachian-Early Hesperian volcanic resurfacing and climatic evolution. Geology 34: 285–288Google Scholar
  92. Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) (2005) Economic Geology 100th Anniversary VolumeGoogle Scholar
  93. Herkenhoff KE and 22 others (2004a) Textures of the soils and rocks at Gusev Crater from Spirit’s microscopic imager. Science 305: 824–827Google Scholar
  94. Herkenhoff KE and 32 others (2004b) Evidence from Opportunity’s microscopic Imager for water on Meridiani Planum. Science 306: 1727–1729Google Scholar
  95. Hughes HG, App FN, McGetchin TR (1977) Global seismic effects of basin forming impacts. Phys Earth Planet Int 15: 251–263Google Scholar
  96. Hurford TA, Helfenstein P, Hoppa GV, Greenberg R, Bills BG (2007) Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447: 292–294Google Scholar
  97. Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220: 41–55Google Scholar
  98. Hynek BM, Phillips RJ (2001) Evidence for extensive denudation of the Martian highlands. Geology 29: 407–410Google Scholar
  99. Ingle S, Coffin MF (2004) Impact origin for the greater Ontong Java Plataeu? Earth Planet Sci Lett 218: 123–34Google Scholar
  100. Inskeep WP, Macur RE, Harrison G, Bostick B, Fendorf S (2004) Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulphate-chloride geothermal spring, Yellowstone National Park. Geoch Cosmochim Acta 68: 3141–3155Google Scholar
  101. Irwin RP, Craddock RA, Howard AD (2005) Interior channels in Martian valley networks: discharge and runoff production. Geology 33: 489–492Google Scholar
  102. Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth and Europa. J Geophys Res 103: 19359–19364Google Scholar
  103. Jaumann R, Hauer E, Lanz J, Hoffmann H, Neukum G (2002) Geomorphological record of water-related erosion on Mars. In: Horneck G, Baunstark-Khan C (eds), Astrobiology. Springer, Berlin, pp. 89–109Google Scholar
  104. Johnson TV (1999) Io. In: Beatty JK, Chaikin A (eds) The New Solar System. Cambridge University Press, Sky Publishing Corp, Cambridge, pp 241–252Google Scholar
  105. Kargel JS (2004) Mars – A warmer, wetter planet. Springer, Berlin, 605pGoogle Scholar
  106. Kargel JS, Pozio S (1996) The volcanic and tectonic history of Enceladus. Icarus 119: 385–404Google Scholar
  107. Kerr RA (2004) Rainbow of Martian minerals paints picture of degradation. Science 305: 770–771Google Scholar
  108. Keszthelyi L, McEwen A (2007) Comparison of flood lavas on Earth and Mars. In: Chapman M (ed) The geology of Mars – evidence from Earth-based analogs, Cambridge University Press, Cambridge, pp 126–150Google Scholar
  109. Keszthelyi L, McEwen AS, Thordarson TH (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res 105: 15027–15050Google Scholar
  110. Kirkland BL, Lynch FL, Rahnis MA, Folk RL, Molineux IJ, McLean RJC (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27: 347–350Google Scholar
  111. Klingelhöfer G and 18 others (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306: 1740–1745Google Scholar
  112. Knoll AH, Grotzinger J (2006) Water on Mars and the prospect of Martian life. Elements 2: 169–173Google Scholar
  113. Knoll AH, Strother PK, Rossi S (1988) Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambr Res 38: 257–279Google Scholar
  114. Komatsu G, Dohn JM, Hare TM (2004a) Hydrogeologic processes of large-scale tectonomagmatic complexes in Mongolia-southern Siberia and on Mars. Geology 32: 325–328Google Scholar
  115. Komatsu G, Ori GG, Ciarcelluti P, Litasov YD (2004b) Interior layered deposits of Valles Marineris, Mars: analogous sub-ice volcanism related to the Baikal rifting, southern Siberia. Planet Space Sci 52: 167–187Google Scholar
  116. Komatsu G, Ori GG, Arzhannitkov SG, Arzhannitkova AV (2006) The Azas plateau in southern Siberia: a proposed terrestrial analogue site for ice-magma-flood processes. Lunar Planet Sci XXXVII: 1065.pdfGoogle Scholar
  117. Kotelnikova S (2002) Microbial production and oxidation of methane in the deep subsurface. Earth Sci Rev 58: 367–395Google Scholar
  118. Kring DA (2000) Impact events and their effect on the origin, evolution and distribution of life. GSA Today 10: 1–7Google Scholar
  119. Krot AN, Keil K, Goodrich CA, Scott ERD, Weisberg MK (2003) Classification of meteorites. In; Davis AM (ed) Treatise on Geochemistry, Elsevier, Oxford, pp 83–128Google Scholar
  120. Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the north polar regions of Mars detected by OMEAG/Mars Express. Science 307: 1584–1586Google Scholar
  121. Leeder MR (1999) Sedimentology and sedimentary basins. Blackwell Science, OxfordGoogle Scholar
  122. Leshin LA, Vicenzi E (2006) Aqueous processes recorded by Martian meteorites: analyzing Martian water on Earth. Elements 2: 157–162Google Scholar
  123. Lorenz RD, Stiles BW, Kirk RL, Allison MD, Persi del Marmo P, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319: 1649–1651Google Scholar
  124. Lowell RP, DuBose M (2005) Hydrothermal systems on Europa. Geophys Res Lett 32: L05202, doi:10.1029/2005GL022375Google Scholar
  125. Malin MC, Edgett KS, Posiolova (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302: 1931–1934Google Scholar
  126. Malin MC, Edgett KS, Posiolova LV, McColley SM, Noe Dobrea EZ (2006) Present-day impact cratering rate and contemporaneous gully activity on Mars. Science 314: 1573–1577Google Scholar
  127. Marinangeli L, Flamini E, Espinasse S (eds) (2004) Exploring Mars surface and its Earth analogues. Planet Space Sci 52(1/3)Google Scholar
  128. McCollom TM (1999) Methanogenesis as apotential source of chemical energy for primary biomass production by authotrophic organisms in hydrothermal systems on Europa. J. Geophys Res 104: 30729–30742Google Scholar
  129. McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by micro-organisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61: 4375–4391Google Scholar
  130. McEwen AS (1999) Flood lavas on Mars. The Geological Society of America, 1999 Annual Meeting, Abstracts with Programs, A-131Google Scholar
  131. McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible biogenic activity in martian meteorite ALH84001. Science 273: 924–930Google Scholar
  132. McLennan SM and 31 others (2005) Provenance and diagenesis of the evaporite-bearing Burns Formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240: 95–121Google Scholar
  133. McSween HY (2003) Mars. In: Davis AM (ed) Treatise on Geochemistry, Elsevier, Oxford, pp 601–621Google Scholar
  134. McSween HY (ed) (2006) Water on Mars. Elements 2(3): 135–137Google Scholar
  135. McSween HY and 34 others (2004) Basaltic rocks analysed by the Spirit Rover in Gusev Crater. Science 305: 842–845Google Scholar
  136. McSween HY, Harvey RP (1998) An evaporation model for formation of carbonates in the ALH84001 martian meteorite. Intl Geol Rev 40: 774–783Google Scholar
  137. Mège D, Masson P (1996) A plume tectonics model for the Tharsis province, Mars. Planet Space Sci 44: 1499–1546Google Scholar
  138. Mével L, Mercier E (2007) Large-scale doming on Europa: A model of formation of Thera Macula. Planet Space Sci, doi:10.106/j.pss.2006.12.001Google Scholar
  139. Morris R and 16 others (2004) Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science 305: 833–836Google Scholar
  140. Mustard JF, Cooper CD, Rifkin MK (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412: 411–413Google Scholar
  141. Newsom EH (2005) Clays in the history of Mars. Nature 438: 570–571Google Scholar
  142. Newsom EH, Britelle GE, Hibbits CA, Crossey LJ, Kudo AM (1996) Impact cratering and the formation of crater lakes on Mars. J Geophys Res 101: 14951–14955Google Scholar
  143. Newsom EH, Hagerty JJ, Thorsos IE (2001) Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1(1): 71–88Google Scholar
  144. Nimmo F (2004) Dynamics of rifting and modes of extension on icy satellites. J Geophys Res 109: E01003, doi:10.1029/2003JE002168Google Scholar
  145. Nimmo F, Spencer JR, Pappalardo RT, Mullen ME (2007) Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447: 289–291Google Scholar
  146. Nimmo F, Tanaka K (2005) Early crustal evolution of Mars. Ann Rev Earth Planet Sci 33: 133–161Google Scholar
  147. Okubo CH, McEwen AS (2007) Fracture-controlled paleo-fluid flow in Candor Chasma, Mars. Science 315: 983–985Google Scholar
  148. Owen T (1982) Titan. In: The Planets, Sci Am, WH Freeman and Co, New York, pp 84–93Google Scholar
  149. Owen T (1999) Titan. In: In: Beatty JK, Chaikin A (eds) The New Solar System. Cambridge University Press, Sky Publishing Corp, Cambridge, pp 276–284Google Scholar
  150. Pappalardo RT (1999) Ganymede and Callisto. In: Beatty JK, Chaikin A (eds) The New Solar System. Cambridge Univ Press, Sky Publishing Corp, Cambridge, pp 263–276Google Scholar
  151. Pappalardo RT and 31 others (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104: 24015–24055Google Scholar
  152. Pappalardo RT, Collins GC, Head JW, Helfenstein P, McCord TB, Moore JM, Prockter LM, Schenk PM, Spencer JR (2004) Geology of Ganymede. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter – the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 363–396Google Scholar
  153. Pedersen K (1993) The deep subterranean biosphere. Earth Sci Rev 34: 243–260Google Scholar
  154. Perron TJ, Mitrovica JX, Manga M, Matsuyam I, Richards (2007) Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447: 840–843Google Scholar
  155. Pirajno F (2004) Hotspots and mantle plumes: global intraplate tectonics, magmatism and ore deposits. Mineral Petrol 82: 183–216Google Scholar
  156. Pirajno F (2005) Hydrothermal processes associated with meteorite impact structures: the evidence from three Australian examples and implications for economic resources. Aust J Earth Sci 52: 587–605Google Scholar
  157. Pirajno F, Van Kranendonk MJ (2005) Review of hydrothermal processes on Earth and implications for Martian analogues. Aust J Earth Sci 32: 329–351Google Scholar
  158. Plescia JB, Saunders RS (1982) Tectonic history of the Tharsis region, Mars. J. Geophys Res 87: 9775–9791Google Scholar
  159. Pollack JB (1975) Mars. Sci Am 233: 106–117Google Scholar
  160. Porco CC and 24 others (2006) Cassini observes the active south pole of Enceladus. Science 311: 1393–1425Google Scholar
  161. Poulet F, Bibring JP, Mustard JF, Gnedrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C & the Omega Team (2005) Phyllosilcates on Mars and implications for early martian clmate. Nature 438: 623–627Google Scholar
  162. Rathburn JA, Squyres SW (2002) Hydrothermal systems associated with Martian impact craters. Icarus 157: 362–372Google Scholar
  163. Rees WG (2001) Physical principles of remote sensing. Cambridge University PressGoogle Scholar
  164. Reese CC, Solomotov VS, Baumgardner JR (2002) Survival of impact-induced thermal anomalies in the Martian mantle. J Geophys Res 107, E10, 5082, doi:10.1029/2000JE001474Google Scholar
  165. Reese CC, Solomatov VS, Baumgardner JR, Stegman DR, Vezolainen AV (2004). Magmatic evolution of impact induced Martian mantle plumes and the origin of Tharsis. J Geophys Res 109: E08009Google Scholar
  166. Rieder R and 14 others (2004) Chemistry of rocks and soils at Meridiani Planum from Alpha particle X-ray spectrometer. Science 306: 1746–1749Google Scholar
  167. Russell MJ, Ingham JK, Zedef V, Maktav, Sunar F, Hall AJ, Fallick AE (1999) Search for signs of life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey. J. Geol Soc Lond 156: 869–888Google Scholar
  168. Sagan C (1981) Cosmos. Macdonald Futura Publ, LondonGoogle Scholar
  169. Sagan C (1994) Pale blue dot. Random House, New YorkGoogle Scholar
  170. Schenk PM, McKinnon WB, Gwynn D, Moore JM (2001) Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature 410: 57–60Google Scholar
  171. Schubert G, Bercovici D, Glatzmaier GA (1990) Mantle dynamics in Mars and Venus: influence of an immobile lithosphere on three-dimensional mantle convection. J Geophys Res 95: 14105–14130Google Scholar
  172. Schubert G, Russell CT, Moore WB (2000) Timing of the Martian dynamo. Nature 408: 666–667Google Scholar
  173. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Pres, CambridgeGoogle Scholar
  174. Schultz PH, Gault DE (1975) Seismic effects from major basin formations on the Moon and Mercury. The Moon 12: 159–177Google Scholar
  175. Schulze-Makuch D, Irwin LN, Guan H (2002) Search parameters for the remote detection of extraterrestrial life. Planet Space Sci 50: 675–683Google Scholar
  176. Seckbach J, Chela-Flores J, Owen T, Raulin T (2005) Life in the Universe – from the Miller experiment to the search for life on other worlds. Kluwer Academic Publ, DordrechtGoogle Scholar
  177. Segura TL, Toon OB, Colaprete A, Zahnl EK (2002) Environmental effects of large impacts on Mars. Science 298: 1977–1980Google Scholar
  178. Shock EL (1997) High-tempertaure life without photosyntheis as a model for Mars. J. Geophys Res 102: 23687–23694Google Scholar
  179. Short NM (2006) Remote Sensing Tutorial; http://rst.gsfc.nasa.gov/
  180. Squyres SW and 48 others (2004a) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science 306: 1698–1703Google Scholar
  181. Squyres SW and 18 others (2004b) In situ evidence for an ancient aqueous environment at Meridiani Planum. Science 306: 1709–1714Google Scholar
  182. Solomon SC and 16 others (2005) New perspective on ancient Mars. Science 307: 1214–1220Google Scholar
  183. Sotin C and 25 others (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435: 786–789Google Scholar
  184. Sotin C (2007) Titan’s lost seas found. Nature 445: 29–30Google Scholar
  185. Stetter KO (1996) Hyperthermophiles in the history of life. In: Bock GR, Goode JA (eds), Evolution of hydrothermal systems on Earth (and Mars). Ciba Foundation Symposium 202, John Wiley & Sons, Chichester, pp 1–10Google Scholar
  186. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic micro-organisms. FEMS Microbiol Rev 78: 117–124Google Scholar
  187. Stofan ER and 37 others (2007) The lakes of Titan. Nature 445: 61–64Google Scholar
  188. Sugorakova AM, Yarmolyuk VV, Lebedev VI (2003) The Cenozoic volcanism of Tuva. Tuvinian Inst Expl Natural Res SB RAS (in Russian)Google Scholar
  189. Taylor SR (1999) Destiny or chance: our Solar System and its place in the Cosmos. Cambridge University Press, CambridgeGoogle Scholar
  190. Thomas-Keprta KL, Bazylinski DA, Golden DC, Wentworth SJ, Gibson EK, McKay DS (1998) Magnetite from ALH84001 carbonate globules: Evidence of biogenic signatures? (abstract). Lunar Planet. Sci. XXIX, Abstract #1494Google Scholar
  191. Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali, H, Gibson EK, Romanek CS (2000) Elongated primastic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmoch Acta 64: 4049–4081Google Scholar
  192. Thomas-Keprta KL, Clemett SJ, Schwartz C, McIntosh JR, Bazylinski DA, Kirschvink J, McKay DS, Vali H, Romanek CS (2004) Truncated hexa-octahedral magnetite crystals in Martian meteorite ALH84001: evidence of biogenic activity on early Mars. Geophys Res Abs 6: 05283Google Scholar
  193. Tobie G, Lunine JJ, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440: 61–64Google Scholar
  194. Tokano T (2004) Water on Mars and life. Springer, Berlin 248pGoogle Scholar
  195. Valentino GM, Cortecci G, Franco E, Stanzione D (1999) Chemical and isotopic compositions of minerals and waters from Campi Flegrei volcanic system, Naples, Italy. J Volc Geoth Res 91: 329–344Google Scholar
  196. Varekamp JC (2004) Copahue Volcano: a modern terrestrial analog of the Opportunity landing site? Am Geophys Union EOS 85(41): 401 and 407Google Scholar
  197. Varnes ES, Jakosky BM, McCollom TM (2003) Biological potential of Martian hydrothermal systems. Astrobiology 3(2): 407–414Google Scholar
  198. Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434: 1011–1014Google Scholar
  199. Walter MR, Brown AJ, Chamberlain SA (2005) Geology of Mars. Encyclopedia of Geology, Elsevier, AmsterdamGoogle Scholar
  200. Walter MR, Des Marais DJ (1993) Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus 101: 129–143Google Scholar
  201. Watters TR, Leuschen CJ, Plaut JJ, Picardi G, Safaeinli A, Clifford, SM, Farrell WM, Ivannov AB, Phillips RJ, Stofan ER and the MARSIS science team (2006) Evidence of buried basins in the northern lowlands of Mars from the MARSIS radar sounder. Lunar Planet Sci Abs XXXVII: 1693.pdfGoogle Scholar
  202. Ward PD, Brownlee D (2004) Rare Earth – why complex life is uncommon in the Universe. Copernicus Books, Springer Science, New YorkGoogle Scholar
  203. Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J. Geophys Res 104: 16437–16451Google Scholar
  204. Williams DA, Greeley R (1994) Assessment of antipodal-impact terrains on Mars. Icarus 110: 196–202Google Scholar
  205. Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res 107, 10.1029/200IJE001593Google Scholar
  206. Windley BF, Allen MB (1993) Mongolian plateau: evidence for a late Cenozoic mantle plume under central Asia. Geology 21: 295–298Google Scholar
  207. Wyatt MB, McSween HY, Tanaka KL, Head JW (2004) Global geologic context for rock types and surface alteration on Mars. Geology 32: 645–648Google Scholar
  208. Wyatt MB, McSween HY (2006) The orbital search for altered materials on Mars. Elements 2: 145–150Google Scholar
  209. Yenne B (1990) The atlas of the Solar System. Bison Books, Hong KongGoogle Scholar
  210. Zahnle K, Schenk PM, Levison HF, Dones L (2003) Cratering rates in the outer Solar System. Icarus 163: 263–289Google Scholar
  211. Zolensky ME (2005) Extraterrestrial water. Elements 1(1): 39–43Google Scholar
  212. Zorin YuA, Turtanov EK, Mordvinova VV, Kozhevnikov M, Yanovskaya TB, Teusso A (2003) The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371: 153–173Google Scholar
  213. Zuber MT (2001) The crust and mantle of Mars. Nature 412: 220–227Google Scholar
  214. Zuber MT, Smith DE, Phillips RJ, Solomon SC, Banerdt WB, Neumann GA, Aharonson O (1992) Shape of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA). Geophys Res Lett 25: 4393–4396Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Geological Survey of Western AustraliaEast PerthAustralia

Personalised recommendations