Stiffness Matrix of Compliant Parallel Mechanisms

  • C. Quennouelle
  • C. M. Gosselin


Starting from the definition of a stiffness matrix, the authors present the Cartesian stiffness matrix of parallel compliant mechanisms. The proposed formulation is more general than any other stiffness matrix found in the literature since it can take into account the stiffness of the passive joints and remains valid for large displacements. Then, the conservative property, the validity,and the positive definiteness of this matrix are discussed.

Key words

stiffness matrix compliant parallel mechanisms kinemato-static model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, S.F. and Kao, I., Conservative congruence transformation for joint and Cartesian stiff-ness matrices of robotic hands and fingers. International Journal of Robotics Research 19(9), 835-847 (2000).CrossRefGoogle Scholar
  2. 2.
    Gosselin, C.M., Stiffness mapping for parallel manipulators. IEEE Transactions on Robotics and Automation 6(3), 377-382 (1990).CrossRefGoogle Scholar
  3. 3.
    Kövecses, J. and Angeles, J., The stiffness matrix in elastically articulated rigid-body systems. Multibody System Dynamics 18(2), 169-184 (2007).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Salisbury, J.K., Active stiffness control of a manipulator in Cartesian coordinates. In Proceed-ings of the 19th IEEE Conference on Decision and Control, Albuquerque, NM, USA, pp. 87-97 (1980).Google Scholar
  5. 5.
    Su, H.J. and McCarthy, J.M., A polynomial homotopy formulation of the inverse static analysis of planar compliant mechanisms. ASME International Journal of Mechanical Design 128(4), 776-786 (2006).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • C. Quennouelle
    • 1
  • C. M. Gosselin
    • 1
  1. 1.Laboratoire de Robotique de l’Université LavalCanada

Personalised recommendations