Skip to main content

Optimization of a Test Trajectory for SCARA Systems

  • Chapter
Advances in Robot Kinematics: Analysis and Design

Abstract

The synthesis of a smooth curve to implement the test trajectory used in SCARA systems is the subject of this paper. The test trajectory includes square corners between its vertical and horizontal segments, which are sources of velocity and acceleration discontinuities. Lamé curves are used to smooth the corners to provide G 2-continuity throughout the test trajectory. Moreover, to make the overall trajectory as smooth as possible, the parameters defining this curve should be selected so as to minimize a cost function. The trajectory is thus synthesized by minimizing the root-mean-square (rms) value of the kinetic energy time-derivative, subject to inequality constraints, using the Orthogonal Decomposition Algorithm, which is based on gradient evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J., Alivizatos, A. and Zsombor-Murray, P., The synthesis of smooth trajectories for pick-&-place operations. IEEE Transactions on Systems, Man, and Cybernetics 18(1), 173-178(1988).

    Article  Google Scholar 

  2. Angeles, J., Anderson, K. and Gosselin, C., Constrained design optimization using orthogonal decomposition. ASME Journal of Mechanisms, Transmissions, and Automation in Design 112(2),255-256 (1990).

    Article  Google Scholar 

  3. Angeles, J., Caro, S., Khan, W. and Morozov, A., Kinetostatic design of an innovative Schön-flies motion generator. Journal of Mechanical Engineering Science 220, 935-943 (2006).

    Google Scholar 

  4. Chang, Y.-H., Lee, T. and Liu, C.-H., On-line approximate Cartesian trajectory planning for robotic manipulator. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 542-547 (1992).

    Article  Google Scholar 

  5. Codourey, A., Contribution à la commande des robots rapides et précis, PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne (1991).

    Google Scholar 

  6. Constantinescu, D. and Croft, E., Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. Journal of Robotic Systems 17(5), 233-249 (2000).

    Article  MATH  Google Scholar 

  7. Gauthier, J., Angeles, J. and Nokleby, S., Optimization of a test trajectory for SCARA sys-tems, Technical Report TR-CIM-07-01, McGill University, Montreal (2007).

    Google Scholar 

  8. Khan, W., The conceptual design of robotic architectures using complexity criteria, PhD Thesis, Department of Mechanical Engineering, McGill University, Montreal (2007).

    Google Scholar 

  9. Lin, C.-S., Chang, P.-R. and Luh, J., Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Transactions on Automatic Control 28(12), 1066-1073 (1983).

    Article  MATH  Google Scholar 

  10. Luh, J. and Lin, C., Approximate joint trajectories for control of industrial robots along Cartesian paths. IEEE Transactions on Systems, Man, and Cybernetics 14, 444-450 (1984).

    Google Scholar 

  11. Paul, R., Manipulator Cartesian path control. IEEE Transactions on Systems, Man, and Cy-bernetics 9, 702-711 (1979).

    Article  MATH  Google Scholar 

  12. Shin, K. and McKay, N., A dynamic programming approach to trajectory planning for robotic manipulator. IEEE Transactions on Automatic Control 31(6), 491-500 (1986).

    Article  MATH  Google Scholar 

  13. Tan, H. and Potts, H., Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints. IEEE Transactions on Robotics and Automation 4(2), 174-185 (1988).

    Article  Google Scholar 

  14. Taylor, R., Planification and execution of straight line manipulator trajectories. IBM Journal of Research and Development 23(4), 424-436 (1979).

    Article  Google Scholar 

  15. Wang, L. and Kuo, M., Time-optimal constant speed motion program for multiple cooperating manipulators. Journal of Robotic Systems 16(3), 185-194 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Gauthier, J.F., Angeles, J., Nokleby, S. (2008). Optimization of a Test Trajectory for SCARA Systems. In: Lenarčič, J., Wenger, P. (eds) Advances in Robot Kinematics: Analysis and Design. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8600-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8600-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8599-4

  • Online ISBN: 978-1-4020-8600-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics