Skip to main content

Digital Soil Mapping as a Component of Data Renewal for Areas with Sparse Soil Data Infrastructures

  • Chapter
Digital Soil Mapping with Limited Data

Abstract

This chapter introduces the concepts of data rescue of legacy soil surveys, here defined as a simple conversion to archival format by scanning or direct entry into a database, and data renewal, here defined as the process of bringing these surveys up to modern standards by taking advantage of technological and conceptual advances in geoinformation technology. This is especially important in areas with sparse soil data infrastructure, as it is both more likely that the data will be lost and less likely that a new survey can be commissioned. Digital Soil Mapping (DSM) techniques, although designed for new surveys, can play an important role in data rescue and renewal, in particular as geodetic control for a GIS coverage, as a medium-resolution elevation model (DEM) and derived terrain parameters to adjust terrain-related boundaries, and synoptic satellite imagery to adjust vegetation or landuse-related boundaries. The semantic issues raised by soil-landscape modelling within DSM are especially important for data renewal and integration with supplementary surveys. As with DSM in general, a data renewal exercise may require cultural and institutional change in traditional soil survey organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batjes, N. H. (Ed.), 1995. A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (Version 1.0). Working Paper and Preprint 95/10b. International Soil Reference and Information Centre (ISRIC), Wageningen (NL).

    Google Scholar 

  • Batjes, N. H., Al-Adamat, R., Bhattacharyya, T., Bernoux, M., Cerri, C. E. P., Gicheru, P., Kamoni, P., Milne, E., Pal, D. K., Rawajfih, Z., 2007. Preparation of consistent soil data sets for modelling purposes: Secondary SOTER data for four case study areas. Agriculture, Ecosystems&Environment 122, 26–34.

    Article  Google Scholar 

  • Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., Kirk, G. J. D., 2005. Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245–248.

    Article  CAS  Google Scholar 

  • Bui, E. N., 2004. Soil survey as a knowledge system. Geoderma 120, 17–26.

    Article  Google Scholar 

  • Bui, E. N., Moran, C. J., 2001. Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data. Geoderma 103, 79–94.

    Article  Google Scholar 

  • Coote, D., MacDonald, K., 2000. The Canadian soil database. In: Sumner, M. (Ed.), Handbook of Soil Science. CRC Press, Boca Raton, FL, pp. H-41–H-51.

    Google Scholar 

  • D’Avelo, T. P., McLeese, R. L., 1998. Why are those lines placed where they are?: An investigation of soil map recompilation methods. Soil Survey Horizons 39, 119–126.

    Google Scholar 

  • Davis, R. E., Foote, F. S., Anderson, J. M., Mikhail, E. M., 1981. Surveying: Theory and Practice, 6th Edition. McGraw-Hill, NewYork.

    Google Scholar 

  • de Man, W. H. E., 2006. Understanding SDI: complexity and institutionalization. International Journal of Geographical Information Science 20, 329–343.

    Article  Google Scholar 

  • Dent, D. L., Ahmed, F. B., 1995. Resurrection of soil surveys: a case study of the acid sulphate soils of The Gambia. I. Data validation, taxonomic and mapping units. Soil Use and Management 11, 69–76.

    Article  Google Scholar 

  • Forbes, T., Rossiter, D., Van Wambeke, A., 1982. Guidelines for evaluating the adequacy of soil resource inventories. SMSS Technical Monograph 4. Cornell University Department of Agronomy, Ithaca, New York.

    Google Scholar 

  • Gorokhovich, Y., Voustianiouk, A., 2006. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment 104, 409–415.

    Article  Google Scholar 

  • Groot, R., McLaughlin, J. (Eds.), 2000. Geospatial Data Infrastructure: Concepts, Cases, and Good Practice. Oxford University Press, Oxford.

    Google Scholar 

  • Hengl,T., Rossiter, D., 2003. Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey. Soil Science Society of America Journal 67, 1810–1822.

    CAS  Google Scholar 

  • Heuvelink, G. B. M., Webster, R., 2001. Modelling soil variation: past, present, and future. Geoderma 100, 269–301.

    Article  Google Scholar 

  • Ibañez, J. J., Ruiz Ramos, M., Zinck, J. A., Bru, A., 2005. Classical pedology questioned and defended. Eurasian Soil Science 38(Supplement 1), 75–80.

    Google Scholar 

  • ISRIC, 1995. SOTER database of Kenya. Kenya Soil Survey, ISRIC – World Soil Information, Wageningen (NL), Nairobi.

    Google Scholar 

  • Kenya Departmentof Agriculture, 1961. Soil survey of the East Konyango area: parts of survey of Kenya, G.S.G.S., 4786 series, sheets 129/II, 129/IV, 130/I&120/III. Map&Report, Government Printer, Nairobi.

    Google Scholar 

  • Krol, B., Rossiter, D. G., Siderius,W., 2006. Ontology-based multi-source data integration for predictive soil mapping. In: Lagacherie, P., McBratney, A., Voltz, M. (Eds.), Digital Soil Mapping: An Introductory Perspective. Developments in Soil Science 31. Elsevier, Amsterdam, 119–133.

    Chapter  Google Scholar 

  • Lagacherie, P., Andrieux, P., Bouzigues, R., 1996. Fuzziness and uncertainty of soil boundaries: from reality to coding in GIS. In: Burrough, P. A., Frank, A. U. (Eds.), Geographic objects with indeterminate boundaries. GISDATA 2. Taylor&Francis, London, pp. 275–286.

    Google Scholar 

  • MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., Goddard, T. W., 2000. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113, 81–109.

    Article  Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., Minasny, B., 2003. On digital soil mapping. Geo-derma 117, 3–52.

    Google Scholar 

  • Metternicht, G. I., Zinck, J. A., 2003. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment 85, 1–20.

    Article  Google Scholar 

  • Mugnier, C., 2003. Grids and datums: Republic of Kenya. Photogrammetric Engineering & Remote Sensing 69, 593–597.

    Google Scholar 

  • Oksanen, J., Sarjakoski, T., 2005. Error propagation of DEM-based surface derivatives. Comput-ers&Geosciences 31, 1015–1027.

    Article  Google Scholar 

  • Rabus, B., Eineder, M., Roth, A., Bamler, R., 2003. The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Pho-togrammetry and Remote Sensing 57, 241–262.

    Article  Google Scholar 

  • Rossiter, D. G., 2004. Digital soil resource inventories: status and prospects. Soil Use and Management 20, 296–301.

    Article  Google Scholar 

  • Rossiter, D. G., 2007. A compendium of on-line soil survey information. On-line document, http://www.itc.nl/personal/rossiter/research/rsrch_ss.html; Accessed: 17-October-2007.

    Google Scholar 

  • Rossiter, D. G., Hengl, T., 2002. Creating geometrically-correct photo-interpretations, photomosaics, and base maps for a project GIS; 3rd revised version. Technical note, International Institute for Geo-information Science and Earth Observation (ITC), http://www. itc.nl/personal/rossiter/teach/sis/TN_Georef_wFigs_Screen_V3.pdf; Accessed: 16-October-2007.

    Google Scholar 

  • Schmidt, J., Hewitt, A., 2004. Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma 121, 243–256.

    Article  Google Scholar 

  • Scull, P., Franklin, J., Chadwick, O., McArthur, D., 2003. Predictive soil mapping: a review. Progress in Physical Geography 27, 171–197.

    Article  Google Scholar 

  • Selvaradjou, S.-K., Montanarella, L., Spaargaren, O., Dent, D., 2005a. European Digital Archive of Soil Maps (EuDASM) – Soil Maps of Africa. EUR 21657EN. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Selvaradjou, S.-K., Montanarella, L., Spaargaren, O., Dent, D., 2005b. European Digital Archive of Soil Maps (EuDASM) – Soil Maps of Asia. EUR 21823 EN. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Selvaradjou, S.-K., Montanarella, L., Spaargaren, O., Dent, D., 2005c. European Digital Archive of Soil Maps (EuDASM) – Soil Maps of Latin America and Carribean Islands. EUR 21822 EN. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Soil Survey Staff, 2007. Soil Survey Geographic (SSURGO) Database. http:// soildatamart.nrcs.usda.gov; Accessed: 16-October-2007.

    Google Scholar 

  • Thompson, J. A., Bell, J. C., Butler, C. A., 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100, 67–89.

    Article  Google Scholar 

  • Thorp, J., Smith, G., 1949. Higher categories of soil classification. Soil Science 67, 117–126.

    Article  Google Scholar 

  • Wilson, J. P., Gallant, J. (Eds.), 2000. Terrain analysis: principles and applications. Wiley&Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rossiter, D. (2008). Digital Soil Mapping as a Component of Data Renewal for Areas with Sparse Soil Data Infrastructures. In: Hartemink, A.E., McBratney, A., Mendonça-Santos, M.d. (eds) Digital Soil Mapping with Limited Data. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8592-5_6

Download citation

Publish with us

Policies and ethics