Skip to main content

An Approach to Removing Uncertainties in Nominal Environmental Covariates and Soil Class Maps

  • Chapter
Digital Soil Mapping with Limited Data

Abstract

In this chapter we present an automated approach to correct the delineation of nominal soil and environmental datasets based on auxiliary metric attributes, aiming to enhance positional accuracy. The detection of uncertainties is based on different spatial and non-spatial approaches. The methodological framework mainly consists of nearest neighbour approaches and comprises supervised feature selection, different ensemble classification techniques, as well as spatial and non-spatial smoothing and generalization approaches. The method is described and applied to an artificial dataset as well as a 1:50 000 German soil map and a 1:1 000 000 geological map of the Republic of Niger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andonova, S., Elisseeff, A., Evgeniou, T., Pontil, M., 2002. A simple algorithm for learning stable machines. In: F. van Harmelen (Ed.), Proceedings of the Fifteenth Eureopean Conference on Artificial Intelligence. IOS Press, Amsterdam. pp. 513–517.

    Google Scholar 

  • Akkus, A., Güvenir, H.A., 1996. K nearest neighbor classification on feature projections. In: L. Saitta (Ed.), Machine Learning: Proceedings of the Thirteenth International Conference. Morgan Kaufmann, San Francisco, CA. pp. 12–19.

    Google Scholar 

  • Alpaydin, E., 1997. Voting over multiple condensed nearest neighbors. Artificial Intelligence Review 11, 115–132.

    Article  Google Scholar 

  • Bay, S.D., 1999. Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis 3, 191–209.

    Article  Google Scholar 

  • Behrens, T., 2003. Digitale Reliefanalyse als Basis von Boden-Landschafts-Modellen – am Beispiel der Modellierung periglaziärer Lagen. Boden und Landschaft 42, 189p. Giessen.

    Google Scholar 

  • Behrens, T., Föcken, U., Spies, E.-D., Goldschmitt, M., 2005. Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science 168, 21–33.

    Article  CAS  Google Scholar 

  • Behrens, T., Scholten, T., 2006a. Digital soil mapping in Germany – a review. Journal of Plant Nutrition and Soil Science 169, 434–443.

    Article  CAS  Google Scholar 

  • Behrens, T., Scholten, T., 2006b. Chapter 25. A comparison of data-mining techniques in predictive soil mapping. In: Lagacherie, P., McBratney, A.B., Voltz, M. (Eds.), Digital Soil Mapping: An Introductory Perspective. Developments in Soil Science, Vol. 31. Elsevier, Amsterdam. pp. 353–364.

    Chapter  Google Scholar 

  • Bishop, T.F.A., Minasny, B., McBratney, A.B., 2006. Uncertainty analysis for soil-terrain models. International Journal of Geographical Information Science 20, 117–134.

    Article  Google Scholar 

  • Breiman, L., 1996. Bagging predictors. Machine Learning 24, 123–140.

    Google Scholar 

  • Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.

    Article  Google Scholar 

  • Brighton, H., Mellish, C., 2002. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153–172.

    Article  Google Scholar 

  • Bühlmann, P., Yu, B., 2002. Analyzing bagging. Annals of Statistics 30, 927–961.

    Article  Google Scholar 

  • Burrough, P.A., McDonnell, R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, New York.

    Google Scholar 

  • Dietrich, W.E., Montgomery, D.R., 1998. SHALSTAB: a digital terrain model for mapping shallow landslide potential, NCASI (National Council of the Paper Industry for Air and Stream Improvement), Corvallis OR. Technical Report, 29p.

    Google Scholar 

  • Fix, E., Hodges, J.L., 1951. Discriminatory analysis – nonparametric discrimination: consistency properties. Technical Report Project 21-49-004, Report Number 4, USAF School of Aviation Medicine, Randolf Field, Texas.

    Google Scholar 

  • Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm, In: L. Saitta (Ed.), Machine Learning: Proceedings of the Thirteenth International Conference. Morgan Kaufmann, San Francisco, CA, pp. 148–156.

    Google Scholar 

  • Greigert, J., 1961. Réologique de reconnaissance du Bassin des Iullemeden 1:1 Mio. BRGM, Niamey, Niger.

    Google Scholar 

  • Hamamoto, Y., Uchimura, S., Tomita, S., 1997. A bootstrap technique for nearest neighbor classifier design. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 73–79.

    Article  Google Scholar 

  • Herrmann, L., Vennemann, K., Stahr, K., von Oppen, M., 1999. Atlas of Natural and Agronomic Resources of Niger and Benin. http://www.uni-hohenheim.de/∼atlas308/startpages/page2/ english/content/title_en.htm.

    Google Scholar 

  • Heuvelink, G.B.M., 1998, Error Propagation in Environmental Modelling with GIS. Taylor & Francis, London, 144p.

    Google Scholar 

  • HLUG (Hessische Landesamt für Umwelt und Geologie), 2002. Erläuterungen zur Bodenkarte von Hessen 1:50000. HLUG, 575p.

    Google Scholar 

  • Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832–844.

    Article  Google Scholar 

  • Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for Geographic Information System analysis. Photogrammetric Engineering and Remote Sensing 54, 1593–1600.

    Google Scholar 

  • Kira, K., Rendell, L., 1992. A practical approach to feature selection. In D.H. Sleeman, P. Edwards (Eds.), Proceedings of the Ninth International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, pp. 249–256.

    Google Scholar 

  • Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., 1995. The Learning Vector Quantization Program Package, Version 3.1. http://www.cis.hut.fi/research/lvq_pak/.

    Google Scholar 

  • Kononenko, I., 1994. Estimating attributes: analysis and extensions of RELIEF. In: L. De Raedt, F. Bergadano, (Eds.), European Conference on Machine Learning. Springer, Heidelberg, pp. 171–182.

    Google Scholar 

  • Lagacherie, P., Holmes, S., 1997. Addressing geographical data errors in a classification tree soil unit prediction. International Journal of Geographical Information Science 11, 183–198.

    Article  Google Scholar 

  • Liu, H., Motoda, H., 1998. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Norwell, MA, 244p.

    Google Scholar 

  • Liu, H., Motoda, H., 2001. Instance Selection and Construction for Data Mining. Kluwer Academic Publishers, Norwell, MA, 448p.

    Google Scholar 

  • McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma 117, 3–52.

    Article  Google Scholar 

  • Perkal, J., 1966. An Attempt at Objective Generalization. Geodéfia, 7(2), 130–142.

    Google Scholar 

  • Robinson, A.H., Sale, R.D., Morrison, J.L., Muehrcke, P.C., 1984. Elements of Cartography, 5th edition. John Wiley & Sons, New York.

    Google Scholar 

  • Schmidt, K., Behrens, T., Scholten, T., 2008. Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma (accepted).

    Google Scholar 

  • Skurichina, M., Duin, R.P.W., 2001. Bagging and the random subspace method for redundant feature spaces. In: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, Proceedings Second International Workshop MCS 2001 (Cambridge, UK, July), Lecture Notes in Computer Science, Vol. 2096. Springer Verlag, Berlin, pp. 1–10.

    Google Scholar 

  • Wilson, D.L., 1972. Asymptotic properties of nearest neighbour rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408–420.

    Article  Google Scholar 

  • Zeidat, N., Wang, S., Eick, C., 2005. Dataset Editing Techniques: A Comparative Study: Department of Computer Science, University of Houston. http://www.cse.unr.edu/bebis/ cs679/PaperPresentations/ZWE05.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Behrens, T., Schmidt, K., Scholten, T. (2008). An Approach to Removing Uncertainties in Nominal Environmental Covariates and Soil Class Maps. In: Hartemink, A.E., McBratney, A., Mendonça-Santos, M.d. (eds) Digital Soil Mapping with Limited Data. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8592-5_18

Download citation

Publish with us

Policies and ethics