Skip to main content

Interaction Between Intraply and Interply Failure in Laminates

  • Conference paper
Mechanical Response of Composites

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 10))

Abstract

A mesoscale model for finite element analysis of failure in laminates is presented. The model consists of separate parts for failure inside a ply (intraply) and failure between plies (interply). Both parts offer a description from onset of failure to complete local failure, thus allowing for progressive failure analysis. Intraply failure is simulated with a softening plasticity model based on a Tsai-Wu criterion with viscoplastic regularization. Details are presented on the implementation of the softening law for orthotropic materials in finite element computation. Interply failure is modeled using interface elements with a damage law for mixed mode delamination. The performance of the model is illustrated by means of an analysis of a laminate with a sharp internal notch – a case in which different modes of ply failure successively take place and interact with failure between the plies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazant ZP, Pijaudier-Cabot G (1989) J Eng Mech 115:755-767

    Article  Google Scholar 

  2. Bazant ZP, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155-177

    Google Scholar 

  3. Bi ćani ć N, Pearce CJ, Owen DRJ (1994) Failure predictions of concrete like materials using softening Hoffman plasticity model. In: Mang H, Bi ćani ć N, de Borst R (eds) Proceedings of EURO-C 1994. Pineridge Press, Swansea

    Google Scholar 

  4. Camanho PP, D ávila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415-1438

    Article  Google Scholar 

  5. Camanho PP, D ávila CG, Pinho ST et al. (2006) Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos Part A 37:165-176

    Article  CAS  Google Scholar 

  6. Daniel IM, Ishai O (2006) Engineering Mechanics of Composite Materials. Oxford university press, New York

    Google Scholar 

  7. D ávila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39:323-345

    Article  CAS  Google Scholar 

  8. Hager WW (1988) Applied Numerical Linear Algebra. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  9. Hashin Z (1980) Failure Criteria for Unidirectional Fiber Composites. J Appl Mech 47: 329-334

    Article  Google Scholar 

  10. Hinton MJ, Soden PD (1998) Predicting failure in composite laminates: the background to the exercise. Compos Sci Tech 58:1001-1010

    Article  Google Scholar 

  11. Hoffman O (1967) The Brittle Strength of orthotropic materials. J Compos Mater 1:200-206

    Article  Google Scholar 

  12. Jiang WG, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982-1995

    Article  Google Scholar 

  13. Li X, Duxbury PG, Lyons P (1994) Considerations for the application and numerical imple-mentation of strain hardening with the Hoffman yield criterion. Comput Struct 52:633-644

    Article  Google Scholar 

  14. Mi Y, Crisfield A, Hellweg HB, Davies GAO (1998) Progressive delamination using interface elements. J Compos Mater 32:1246-1272

    CAS  Google Scholar 

  15. Muhlhaus HB, Aifantis EC (1991) A variational principle for gradient plasticity. Int J Solids Struct 28:845-858

    Article  MathSciNet  Google Scholar 

  16. Nairn JA, Hu S (1994) Matrix microcracking. In: Talreja R (ed) Damage Mechanics of Composite Materials. Elsevier science, Amsterdam

    Google Scholar 

  17. Puck A, Sch ürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045-1067

    Article  Google Scholar 

  18. Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Method Eng 58:2013-2040

    Article  Google Scholar 

  19. Schellekens JCJ, de Borst R (1990) The use of the Hoffman yield criterion in finite element analysis of anisotropic composites. Comput Struct 37:1087-1096

    Article  Google Scholar 

  20. Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Method Eng 36:43-66

    Article  Google Scholar 

  21. Schellekens JCJ, de Borst R (1994) Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach. Compos Struct 28:357-373

    Article  Google Scholar 

  22. Sluys LJ (1992) Wave propagation, localisation and dispersion in softening solids. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  23. Sun CT, Tao J (1998) Prediction of failure envelopes and stress/strain behaviour of composite laminates. Compos Sci Technol 58:1125-1136

    Article  CAS  Google Scholar 

  24. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58-80

    Article  Google Scholar 

  25. Turon A, Camanho PP, Costa J, D ávila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072-1089

    Article  Google Scholar 

  26. Turon A, D ávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665-1682

    Article  Google Scholar 

  27. Wagner W, Gruttmann F, Sprenger W (2001) A finite element formulation for the simulation of propagating delaminations in layered composite structures. Int J Numer Method Eng 51:1337-1359

    Article  Google Scholar 

  28. Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Method Eng 40:3839-3864

    Article  Google Scholar 

  29. Wisnom MR, Chang FK (2000) Modelling of splitting and delamination in notched cross-ply laminates. Compos Sci Technol 60:2849-2856

    Article  Google Scholar 

  30. Yang QD, Cox BN (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107-137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

van der Meer, F.P., Sluys, L.J. (2008). Interaction Between Intraply and Interply Failure in Laminates. In: Mechanical Response of Composites. Computational Methods in Applied Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8584-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8584-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8583-3

  • Online ISBN: 978-1-4020-8584-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics