Skip to main content

Numerical Simulation of Fiber Orientation and Resulting Thermo-Elastic Behavior in Reinforced Thermo-Plastics

  • Conference paper
Mechanical Response of Composites

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 10))

Abstract

In this work, we describe a numerical technique to predict fiber orientation during injection moulding of fiber reinforced polymers, and how the resulting part behaves regarding this process induced orientation. The orientation state of a set of fibers is described by a second order tensor. Its evolution is given by the Folgar and Tucker tensorial hyperbolic equation. Even if this equation contains a fourth order term, it may be expressed as a function of the second order tensor using a closure approximation. The resolution of Folgar and Tucker’s equation is carried out by a continuous approach based on the Standard Galerkin method, with stabilisation. The results are compared with experimental orientation measurements on an injected plate. Once the part solidifies it is considered as a biphasic material, composed by the fibers and the polymer matrix, where each phase has a linear elastic behaviour. The fhermo-elastic properties of the composite material are linked to the fiber orientation and the properties of each phase using a homogenisation technique. Finally, to validate the previous study on the prediction of the thermo-elastic properties at the solid state, a three-dimensional industrial case is deeply analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advani SG, Tucker III CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751-784

    Article  CAS  ADS  Google Scholar 

  2. Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367-386

    Article  ADS  Google Scholar 

  3. Ashton JE, Halpin JC, Petit PH (1969) Primer on Composite Analysis. Technomic Publishing, Stamford, CT

    Google Scholar 

  4. Basset O, Digonnet H, Guillard H, Coupez T (2005) Multi-phase flow calculation with interface tracking coupled solution. Int Conf on Computational Methods for Coupled Problems in Science and Engineering, CIMNE, Barcelona

    Google Scholar 

  5. Batchelor GK (1970) The stress generated in a non dilute suspension of elongated particles by pure straining motion. J Fluid Mech 46:813-829

    Article  MathSciNet  ADS  Google Scholar 

  6. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147-157

    Article  Google Scholar 

  7. Brezzi F, Franca LP, Russo A (1998) Further considerations on residual free bubbles for advective-diffusive equations. Comput Methods Appl Mech 166:25-33

    Article  MathSciNet  Google Scholar 

  8. Brooks AN and Hughes TJR (1982) Streamline Upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199-259

    Article  MathSciNet  Google Scholar 

  9. Carreau P, DeKee D, Daroux M (1979) An analysis of the behaviour of polymeric solutions. Can J Chem Eng 57:135-140

    Article  CAS  Google Scholar 

  10. Christensen RM, Waals FM (1972) Effective stiffness of randomly oriented fiber composites. J Compos Mater 6:518-532

    Google Scholar 

  11. Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow induced fiber orientation. J Rheol 39:1095-1122

    Article  CAS  ADS  Google Scholar 

  12. Doi M (1981) Molecular Dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J Polymer Sci: Polymer Phys Edn 19:229

    Article  CAS  Google Scholar 

  13. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc 241:376-396

    Article  MathSciNet  ADS  Google Scholar 

  14. 14. Eshelby JD (1961) Elastic inclusions and inhomogeneities. In: Sneddon IN, Hill R (eds) Progress in Solid Mechanics, Vol. 2, pp. 89-140

    Google Scholar 

  15. Facca G, Kortschot T, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos Part A 37:1660-1671

    Article  CAS  Google Scholar 

  16. Folgar FP, Tucker CL (1984) Orientation behavior of fibers in concentrated uspensions. J Reinf Plast Compos 3:98-119

    Article  CAS  Google Scholar 

  17. Fu SY, Lauke B (1998) The elastic modulus of misaligned short fibre reinforced polymers. Compos Sci Technol 58:389-400

    Article  CAS  Google Scholar 

  18. Gupta M, Wang KK (1993) Fibre orientation and mechanical properties of short-fibre-reinforced injection-molded composites: simulation and experimental results. Polym Compos 14:367-382

    Article  CAS  Google Scholar 

  19. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732-734

    Google Scholar 

  20. Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:732-352

    Google Scholar 

  21. Hand GL (1962) A theory of anisotropic fluids. J Fluid Mech 13:33-46

    Article  MathSciNet  ADS  Google Scholar 

  22. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech 21:236-241

    CAS  Google Scholar 

  23. Hinch EJ, Leal LG (1976) Constitutive equations in suspension mechanics. Part 2. Approxi-mate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76:187-208

    Article  ADS  Google Scholar 

  24. Huang JH (2001) Some closed-form solutions for effective moduli of composites containing randomly oriented short fibers. Mater Sci Eng 315:11-20

    Article  Google Scholar 

  25. Jeffery G (1922) The motion of ellipsoidal particles immersed in viscous fluid. Proc Royal Soc Lond A 102:161

    Article  ADS  Google Scholar 

  26. Kabanemi KK, H étu JF (1999) Modelling and simulation of nonisothermal effects in injection moulding of rigid fibers suspensions. J Inject Mould Technol 3:80-87

    CAS  Google Scholar 

  27. Kamal MR, Singh P (1975) The extend to which fibre breakdown can be influenced when injection moulding glass fibre reinforced thermoplastics. Plaste U Kaut 22:739-746

    Google Scholar 

  28. Karpov V, Kaufman M (1965) Injection moulding of glass reinforced nylon 66. Br Plast 38:498-506

    CAS  Google Scholar 

  29. Levin VM (1967) Thermal expansion coefficients of heterogeneous materials. Mekhanika Tverdogo Tela 2:88-94

    Google Scholar 

  30. Lielens G, Pirotte P, Couniot A et al. (1998) Prediction of thermo-mechanical properties of compression-moulded composites. Compos Part A 29:63-70

    Article  Google Scholar 

  31. Lipscomb GG, Keunings R, Marucci G, Denn MM (1984) A continuum theory for fiber suspensions. Proc IX Int Congress on Rheology 2:497-499

    Google Scholar 

  32. Lipscomb GG, Denn MM, Hur DU, Boger DV (1988) The flow of fiber suspensions in complex geometries. J Non-Newtonian Fluid Mech 26:297-325

    Article  CAS  Google Scholar 

  33. Martin éz MA, Cueto E, Doblar é M, Chinesta F (2003) Natural element meshless simulation of flows involving short fiber suspensions. J Non-Newtonian Fluid Mech 115:51-78

    Article  CAS  Google Scholar 

  34. Mlekush B (1999) Thermoelastic properties of short-fiber-reinforced thermoplastics. Compos Sci Technol 59:911-923

    Article  Google Scholar 

  35. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of material with misfitting inclusions. Acta Metall 21:571-574

    Article  Google Scholar 

  36. Redjeb A, Laure P, Silva L, Vincent M, Coupez T (2005) Simulation num érique de l’orientation de fibres en injection de thermoplastique renforc é . 17 éme Congr ès Français de M écanique, Troyes, France

    Google Scholar 

  37. Scharpery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2:380-404

    Article  Google Scholar 

  38. Simth JC (1976) Experiment values for elastic constants of a particulate-filled flassy polymer. J Res Natl Inst Stand Technol 80:45-49

    Google Scholar 

  39. Tandon GP, Weng GJ (1986) Average stress in the matrix and effective moduli of randomly oriented composites. Compos Sci Technol 27:111-132

    Article  CAS  Google Scholar 

  40. Taya M, Dunn ML, Derby B, Walker J (1990) Thermal residual stress in a two-dimensional in-plane misoriented short fiber composite. Appl Mech 43:294-303

    Article  Google Scholar 

  41. Tsai SW, Pagano NJ (1969) Invariant properties of composite materials. In: Tsai SW, Halpin JC, Pagano NJ (eds) Composite Materials Workshop. Technomic Publishing, Stamford, CT

    Google Scholar 

  42. Vincent M, Redjeb A, Laure P, Coupez T (2006) Injection moulding of short fiber reinforced thermoplastics: a comparison between experimental results and numerical simulation. ECCM 12, Biarritz, France

    Google Scholar 

  43. Yasuda K, Armstrong R, Cohen R (1981) Shear-flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20:163-178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Miled, H., Silva, L., Agassant, J.F., Coupez, T. (2008). Numerical Simulation of Fiber Orientation and Resulting Thermo-Elastic Behavior in Reinforced Thermo-Plastics. In: Mechanical Response of Composites. Computational Methods in Applied Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8584-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8584-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8583-3

  • Online ISBN: 978-1-4020-8584-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics