Skip to main content

Computational Methods for Debonding in Composites

  • Conference paper
Mechanical Response of Composites

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 10))

Abstract

This contribution starts with a discussion of various phenomena in laminated composite structures that can lead to failure: matrix cracking, delamination between plies, and debonding and subsequent pull-out between fibres and the matrix material. The different scales are discussed at which the effect of these nonlinearities can be analysed. From these scales – the macro, meso and micro-levels – the meso-level is normally used for the analysis of delamination, which is the focus of this contribution. At this level, the plies are modelled as continua and interface elements between them conventionally serve as the framework to model delamination and debonding. After a a derivation of interface elements and a brief discussion of the cohesive–zone concept and its importance for the analysis of delamination, a particular finite element model for the plies is elaborated: the solid–like shell. Next, a more recent method to numerically model delamination is discussed, which exploits the partition–of–unity property of finite element shape functions. This approach offers advantages over interface elements, as will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701-1736

    Article  Google Scholar 

  2. Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36:2189-2216

    Article  Google Scholar 

  3. Allix O, Ladev èze P (1992) Interlaminar interface modelling for the prediction of delamina-tion. Compos Struct 22:235-242

    Article  ADS  Google Scholar 

  4. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727-758

    Article  Google Scholar 

  5. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55-129

    Article  MathSciNet  Google Scholar 

  6. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601-620

    Article  MathSciNet  Google Scholar 

  7. de Borst R (2004) Damage, material instabilities, and failure. In: Stein E, de Borst R, Hughes TJR (ed) Encyclopedia of Computational Mechanics, Volume 2, Chapter 10. Wiley, Chichester

    Google Scholar 

  8. Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30:2779-2811

    Google Scholar 

  9. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100-108

    Article  ADS  Google Scholar 

  10. Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplas-tic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309-330

    Article  Google Scholar 

  11. Hashagen F, de Borst R (2000) Numerical assessment of delamination in fibre metal laminates. Comput Methods Appl Mech Eng 185:141-159

    Article  Google Scholar 

  12. Ladev èze P, Lubineau G (2002) An enhanced mesomodel for laminates based on microme-chanics. Compos Sci Technol 62:533-541

    Article  Google Scholar 

  13. Mo ës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813-833

    Article  Google Scholar 

  14. Mo ës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131-150

    Article  Google Scholar 

  15. Parisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Methods Eng 38:1855-1883

    Article  Google Scholar 

  16. 16. Remmers JJC, de Borst R (2002) Delamination buckling of Fibre-Metal Laminates under compressive and shear loadings. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, CD-ROM

    Google Scholar 

  17. Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013-2040

    Article  Google Scholar 

  18. Schellekens JCJ, de Borst R (1992) On the numerical integration of interface elements. Int J Numer Methods Eng 36:43-66

    Article  Google Scholar 

  19. Schellekens JCJ, de Borst R (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30:1239-1253

    Article  Google Scholar 

  20. Schellekens JCJ, de Borst R (1994) Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach. Compos Struct 28:357-373

    Article  Google Scholar 

  21. Schellekens JCJ, de Borst R (1994) The application of interface elements and enriched or rate-dependent continuum models to micro-mechanical analyses of fracture in composites. Comput Mech 14:68-83

    Article  Google Scholar 

  22. Schipperen JHA, Lingen FJ (1999) Validation of two-dimensional calculations of free edge delamination in laminated composites. Compos Struct 45:233-240

    Article  Google Scholar 

  23. Shivakumar K, Whitcomb J (1985) Buckling of a sublaminate in a quasi-isotropic composite laminate. J Compos Mater 19:2-18

    Article  Google Scholar 

  24. Simone A (2004) Partition of unity-based discontinuous elements for interface phenomena: computational issues. Commun Numer Methods Eng 20:465-478

    Article  Google Scholar 

  25. Turon A, D ávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665-1682

    Article  Google Scholar 

  26. Wells GN, de Borst R, Sluys LJ (2002) A consistent geometrically non-linear approach for delamination. Int J Numer Methods Eng 54:1333-1355

    Article  MathSciNet  Google Scholar 

  27. Wells GN, Sluys LJ (2001) A new method for modeling cohesive cracks using finite elements. Int J Numer Methods Eng 50:2667-2682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

de Borst, R., Remmers, J.J.C. (2008). Computational Methods for Debonding in Composites. In: Mechanical Response of Composites. Computational Methods in Applied Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8584-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8584-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8583-3

  • Online ISBN: 978-1-4020-8584-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics