Spectral Behavior of Various Subgrid-Scale Models in LES at Very High Reynolds Number

  • R. Cocle
  • L. Bricteux
  • G. Winckelmans
Part of the Ercoftac Series book series (ERCO, volume 12)

Abstract

This study investigates the capabilities of various recent subgrid-scale (SGS) models (the so-called “multiscale” models) for large-eddy simulation (LES), used either in a vortex-in-cell (VIC) method or in a pseudo-spectral (PS) method, and their applicability to the simulation of decaying homogeneous isotropic turbulence (HIT) in the limit of very high Reynolds number (i.e. LES on a large grid and where the molecular viscosity dissipation is negligible compared to the SGS dissipation). The proper coefficient value for each model investigated was obtained by a calibration performed in an earlier study. Various large grid resolutions (1283, 2563 and 5123) are used to compare and to indeed obtain the asymptotic spectral behavior of each model. We are then able to emphasize the behavior of the models, that is not necessarily observable in “small” LES (i.e. in LES at moderate Reynolds number and/or using a smaller mesh). In particular, we show that the multiscale models perform significantly better than the Smagorinsky model: a much wider inertial range is obtained.

Keywords

Large-eddy simulation Subgrid-scale modelling Multiscale modelling High Reynolds number flows Spectral behavior Effective viscosity Hyper-viscosity Decaying homogeneous isotropic turbulence Lagrangian methods Vortex particle method Vortex-in-cell method Spectral method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams J, Swarztrauber P, and Sweet R (1975) Efficient FORTRAN subprograms for the solution of elliptic partial differential equations (FISHPACK ver 4.0). NCAR Technical Note TN/IA-109Google Scholar
  2. 2.
    Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, New-YorkMATHGoogle Scholar
  3. 3.
    Cocle R, Dufresne L, Winckelmans G (2006) Investigation of multiscale subgrid models for LES of instabilities and turbulence in wake vortex systems. In: Complex Effects in LES: Springer volume, LNCSE series. Springer, BerlinGoogle Scholar
  4. 4.
    Cocle R, Winckelmans GS, Daeninck G (2007) Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J Comp Phys 227(4):2263–2292CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Cottet G-H, Koumoutsakos PD (2000) Vortex methods, theory and practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Ducros F, Comte P, Lesieur M (1996) Large-eddy simulation of transition to turbulence in a boundary layer spatially developing over a flat plate. J Fluid Mech 326:1–36MATHCrossRefADSGoogle Scholar
  7. 7.
    Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512CrossRefADSGoogle Scholar
  8. 8.
    Jeanmart H, Winckelmans G (2007) Investigation of eddy-viscosity models modified using discrete filters: a simplified “regularized variational multiscale model” and an “enhanced field model”. Phys Fluids 19, Art no 055110Google Scholar
  9. 9.
    Lamorgese AG, Caughey DA, Pope SB (2005) Direct numerical simulation of homogeneous tubulence with hyperviscosity. Phys Fluids 17, Art no 015106Google Scholar
  10. 10.
    Rogallo R (1981) Numerical experiments in homogeneous turbulence. NASA Tech Memo 81315, NASA Ames Research CenterGoogle Scholar
  11. 11.
    Stolz S, Schlatter P, Meyer D, Kleiser L (2004) High-pass filtered eddy-viscosity models for LES, In: Friedrich R, Geurts BJ, Métais O (eds) Direct and large-eddy simulation V:81–88. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Stolz S, Schlatter P, Kleiser L (2005) High-pass filtered eddy-viscosity models for large-eddy simulations of transitional flow. Phys Fluids 17, Art no 065103CrossRefADSGoogle Scholar
  13. 13.
    Vreman AW (2003) The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids 15:L61–L64CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Winckelmans G (2004) Vortex methods. In: Stein E, de Borst R, Hughes TJR (eds) Volume 3 (Fluids) of the Encyclopedia of computational mechanics. John Wiley & Sons, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. Cocle
    • 1
  • L. Bricteux
    • 1
  • G. Winckelmans
    • 1
  1. 1.Mechanical Engineering Department Division TERM and Center for Systems Engineering and Applied Mechanics (CESAME)Université Catholique de Louvain (UCL)1348 Louvain-la-NeuveBelgium

Personalised recommendations