Skip to main content

Mesh Dependency of Turbulent Reacting Large-Eddy Simulations of a Gas Turbine Combustion Chamber

  • Chapter
Quality and Reliability of Large-Eddy Simulations

Part of the book series: Ercoftac Series ((ERCO,volume 12))

Abstract

Convergence of reacting LES predictions for an aeronautical gas turbine combustion chamber is analysed in terms of mesh resolution. To do so three fully unstructured meshes containing respectively 1.2, 10.6 and 43.9 million tetrahedra are used to compute this fully turbulent reacting flow. Resolution criteria obtained from the mean velocity and reacting fields depict different convergence behaviors. Reacting fields and more specifically combustion regimes are seen to be slightly grid dependent while maintaining mean global combustion quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudier G et al (2007) Proc Combust Inst 31:3075

    Article  Google Scholar 

  2. Moin P, Apte SV (2006) AIAA J 44:698

    Article  ADS  Google Scholar 

  3. Légier JP, Poinsot T, Veynante D, (2000) In Proceedings of the Summer Program 2000, pp. 157–168, Center for Turbulence Research, Stanford, USA

    Google Scholar 

  4. Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. Edwards, Flourtown

    Google Scholar 

  5. Légier JP (2001) Simulations numériques des instabilités de combustion dans les foyers aéronautiques. Phd thesis, INP Toulouse

    Google Scholar 

  6. Schmitt P et al (2007) J Fluid Mech 570:17

    Article  MATH  ADS  Google Scholar 

  7. Martin C et al (2006) AIAA J 44:741

    Article  ADS  Google Scholar 

  8. Sagaut P (2000) Large Eddy simulation for incompressible flows. Springer, Berlin Heidelberg, New York

    Google Scholar 

  9. Ferziger J, Perić M (1997) Computational methods for fluid dynamics. Springer, Berlin Heidelberg, New York

    Google Scholar 

  10. Pope SB (2000) Turbulent flows. Cambridge University Press

    Google Scholar 

  11. Smagorinsky J (1963) Mon Wea Rev 91:99

    Article  ADS  Google Scholar 

  12. Moin P et al (1991) Phys Fluids A 3:2746

    Article  MATH  ADS  Google Scholar 

  13. Erlebacher G et al (1992) J Fluid Mech 238:155

    Article  MATH  ADS  Google Scholar 

  14. Ducros F, Comte P, Lesieur M (1996) J Fluid Mech 326:1

    Article  MATH  ADS  Google Scholar 

  15. Ghosal S, Moin P (1995) J Comput Phys 118:24

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Lilly DK (1992) Phys Fluids A 4:633

    Article  ADS  Google Scholar 

  17. Germano M (1992) J Fluid Mech 238:325

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Meneveau C, Lund T, Cabot W (1996) J Fluid Mech 319:353

    Article  MATH  ADS  Google Scholar 

  19. Colin O et al (2000) Phys Fluids 12:1843

    Article  ADS  Google Scholar 

  20. Roux A et al (2008) Combust flame 152(1–2):154–176

    Article  Google Scholar 

  21. Linan A, Williams F (1993) Fundamental aspects of combustion. Oxford University Press

    Google Scholar 

  22. Moureau V et al (2005) J Comput Phys 202:710

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Poinsot T, Echekki T, Mungal M (1992) Combust Sci Tech 81:45

    Article  Google Scholar 

  24. Pope SB (2004) New J Phys 6, Art no 35

    Google Scholar 

  25. Veynante D, Knikker R (2006) J Turb 7

    Google Scholar 

  26. Klein M (2005) Flow Turb Combust 75:131

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boudier, G., Staffelbach, G., Gicquel, L.Y., Poinsot, T.J. (2008). Mesh Dependency of Turbulent Reacting Large-Eddy Simulations of a Gas Turbine Combustion Chamber. In: Meyers, J., Geurts, B.J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations. Ercoftac Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8578-9_26

Download citation

Publish with us

Policies and ethics